zbMATH — the first resource for mathematics

Reduced-order semi-implicit schemes for fluid-structure interaction problems. (English) Zbl 06861097
Benner, Peter (ed.) et al., Model reduction of parametrized systems. Selected contributions based on the presentations at the MoRePaS conference, SISSA, Trieste, Italy, October 13–16, 2015. Cham: Springer. MS&A, Model. Simul. Appl. 17, 149-167 (2017).
Summary: POD-Galerkin reduced-order models (ROMs) for fluid-structure interaction problems (incompressible fluid and thin structure) are proposed in this paper. Both the high-fidelity and reduced-order methods are based on a Chorin-Temam operator-splitting approach. Two different reduced-order methods are proposed, which differ on velocity continuity condition, imposed weakly or strongly, respectively. The resulting ROMs are tested and compared on a representative haemodynamics test case characterized by wave propagation, in order to assess the capabilities of the proposed strategies.
For the entire collection see [Zbl 1381.65001].

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Full Text: DOI
[1] 1.Amsallem, D., Cortial, J., Farhat, C.: Towards real-time computational-fluid-dynamics-based aeroelastic computations using a database of reduced-order information. AIAA J. 48(9), 2029-2037 (2010)
[2] 2.Astorino, M., Chouly, F., Fernández, M.A.: Robin based semi-implicit coupling in fluid-structure interaction: Stability analysis and numerics. SIAM J. Sci. Comput. 31(6), 4041-4065 (2010) · Zbl 1323.74099
[3] 3.Badia, S., Nobile, F., Vergara, C.: Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227(14), 7027-7051 (2008) · Zbl 1140.74010
[4] 4.Badia, S., Quaini, A., Quarteroni, A.: Splitting methods based on algebraic factorization for fluid-structure interaction. SIAM J. Sci. Comput. 30(4), 1778-1805 (2008) · Zbl 1368.74021
[5] 5.Ballarin, F., Manzoni, A., Quarteroni, A., Rozza, G.: Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations. Int. J. Numer. Methods Eng. 102(5), 1136-1161 (2015) · Zbl 1352.76039
[6] 6.Ballarin, F., Rozza, G.: POD-Galerkin monolithic reduced order models for parametrized fluid-structure interaction problems. Int. J. Numer. Methods Fluids 82(12), 1010-1034 (2016)
[7] 7.Ballarin, F., Sartori, A., Rozza, G.: RBniCS - reduced order modelling in fenics.
[8] 8.Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C.R. Math. 339(9), 667-672 (2004) · Zbl 1061.65118
[9] 9.Colciago, C.M.: Reduced order fluid-structure interaction models for haemodynamics applications. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, N. 6285 (2014) · Zbl 1293.92008
[10] 10.Fernández, M.A.: Incremental displacement-correction schemes for incompressible fluid-structure interaction. Numer. Math. 123(1), 21-65 (2013) · Zbl 1331.76068
[11] 11.Fernández, M.A., Gerbeau, J.F., Grandmont, C.: A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int. J. Numer. Methods Eng. 69(4), 794-821 (2007) · Zbl 1194.74393
[12] 12.Fernández, M.A., Landajuela, M., Mullaert, J., Vidrascu, M.: Robin-Neumann schemes for incompressible fluid-structure interaction. Domain Decomposition Methods in Science and Engineering, vol. XXII. pp. 65-76. Springer, Cham (2016) · Zbl 1383.74083
[13] 13.Fernández, M.A., Mullaert, J., Vidrascu, M.: Explicit Robin-Neumann schemes for the coupling of incompressible fluids with thin-walled structures. Comput. Methods Appl. Mech. Eng. 267, 566-593 (2013) · Zbl 1286.76041
[14] 14.Formaggia, L., Gerbeau, J., Nobile, F., Quarteroni, A.: On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191(6-7), 561-582 (2001) · Zbl 1007.74035
[15] 15.Guermond, J.L., Quartapelle, L.: On stability and convergence of projection methods based on pressure poisson equation. Int. J. Numer. Methods Fluids 26(9), 1039-1053 (1998) · Zbl 0912.76054
[16] 16.Guidoboni, G., Glowinski, R., Cavallini, N., Canic, S.: Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow. J. Comput. Phys. 228(18), 6916-6937 (2009) · Zbl 1261.76056
[17] 17.Hesthaven, J.S., Rozza, G., Stamm, B.: Certified reduced basis methods for parametrized partial differential equations. SpringerBriefs in Mathematics. Springer, New York (2015) · Zbl 1329.65203
[18] 18.Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: A reduced computational and geometrical framework for inverse problems in hemodynamics. Int. J. Numer. Methods Biomed. Eng. 29(7), 741-776 (2013)
[19] 19.Lassila, T., Quarteroni, A., Rozza, G.: A reduced basis model with parametric coupling for fluid-structure interaction problems. SIAM J. Sci. Comput. 34(2), A1187-A1213 (2012) · Zbl 1390.74053
[20] 20.Logg, A., Mardal, K.A., Wells, G.N.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012) · Zbl 1247.65105
[21] 21.Quarteroni, A., Formaggia, L.: Mathematical modelling and numerical simulation of the cardiovascular system. In: Computational Models for the Human Body. Handbook of Numerical Analysis, vol. 12, pp. 3-127. Elsevier, Amsterdam (2004)
[22] 22.Quarteroni, A., Tuveri, M., Veneziani, A.: Computational vascular fluid dynamics: problems, models and methods. Comput. Vis. Sci. 2(4), 163-197 (2000). doi:10.1007/s007910050039. · Zbl 1096.76042
[23] 23.Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations, vol. 23. Springer, Berlin (2008) · Zbl 1151.65339
[24] 24.Rozza, G.: Reduced basis methods for Stokes equations in domains with non-affine parameter dependence. Comput. Vis. Sci. 12(1), 23-35 (2009)
[25] 25.Rozza, G., Huynh, D.B.P., Manzoni, A.: Reduced basis approximation and a posteriori error estimation for stokes flows in parametrized geometries: roles of the inf-sup stability constants. Numer. Math. 125(1), 115-152 (2013) · Zbl 1318.76006
[26] 26.Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Meth. Eng. 15, 1-47 (2007) · Zbl 1304.65251
[27] 27.Rozza, G., Veroy, K.: On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Eng. 196(7), 1244-1260 (2007) · Zbl 1173.76352
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.