zbMATH — the first resource for mathematics

Time discretization for capillary flow: beyond backward Euler. (English) Zbl 1391.76588
Bothe, Dieter (ed.) et al., Transport processes at fluidic interfaces. Basel: Birkhäuser/Springer (ISBN 978-3-319-56601-6/hbk; 978-3-319-56602-3/ebook). Advances in Mathematical Fluid Mechanics, 121-143 (2017).
Summary: Development and analysis of numerical methods for two-phase flow has mainly focussed on spatial aspects of the discretization so far. In turn, most of the methods available are of first order in time at most and only conditionally stable. For many applications, however, these shortcomings may constitute the computational bottleneck, since both disadvantages dictate very small time step sizes in order to arrive at a decent approximation of the underlying problem. In this article we therefore focus on the time discretization of capillary free surface flows with the following features: higher order in time convergence, unconditional stability and low dissipativity. Applying the method of lines we use stiff integrators from the class of Rosenbrock and W-methods. As an alternative, a space-time Galerkin method is presented. These methods are compared computationally for examples of one- and two-phase capillary flows.
For the entire collection see [Zbl 1378.76006].
Reviewer: Reviewer (Berlin)
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76M10 Finite element methods applied to problems in fluid mechanics
76D45 Capillarity (surface tension) for incompressible viscous fluids
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] 1.Aland, S., Boden, S., Hahn, A., Klingbeil, F., Weismann, M., Weller, S.: Quantitative comparison of Taylor flow simulations based on sharp-interface and diffuse-interface models. Int. J. Numer. Methods Fluids 73(4), 344-361 (2013). doi:10.1002/fld.3802
[2] 2.Aland, S., Lehrenfeld, C., Marschall, H., Meyer, C., Weller, S.: Accuracy of two-phase flow simulations: the Taylor Flow benchmark. PAMM 13(1), 595-598 (2013). doi:10.1002/pamm.201310278
[3] 3.Aziz, A., Monk, P.: Continuous finite elements in space and time for the heat equation. Math. Comput. 52(186), 255-274 (1989). doi:10.1090/S0025-5718-1989-0983310-2 · Zbl 0673.65070
[4] 4.Bänsch, E.: Simulation of instationary, incompressible flows. Acta Math. Univ. Comenian. 67(1), 101-114 (1998) · Zbl 0929.35105
[5] 5.Bänsch, E.: Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numer. Math. 88, 203-235 (2001) · Zbl 0985.35060
[6] 6.Bänsch, E., Weller, S.: Fully implicit time discretization for a free surface flow problem. PAMM 11(1), 619-620 (2011). doi:10.1002/pamm.201110299
[7] 7.Bänsch, E., Weller, S.: A comparison of several time discretization methods for free surface flows. In: Handlovicova, A., Minarechova, Z., Sevcovic, D. (eds.) ALGORITMY 2012, 19th Conference on Scientific Computing, Vysoke Tatry - Podbanske, pp. 331-341 (2012). · Zbl 1278.76118
[8] 8.Bänsch, E., Weller, S.: Linearly implicit time discretization for free surface problems. PAMM 12(1), 525-526 (2012). doi:10.1002/pamm.201210251
[9] 9.Basting, S., Bänsch, E.: Preconditioners for the discontinuous Galerkin time-stepping method of arbitrary order. ESAIM: Math. Model. Numer. Anal. (2016). doi:10.1051/m2an/2016055 · Zbl 1375.65131
[10] 10.Basting, S., Weismann, M.: A hybrid level set-front tracking finite element approach for fluid-structure interaction and two-phase flow applications. J. Comput. Phys. 255(0), 228-244 (2013). doi: · Zbl 1349.76176
[11] 11.Basting, S., Weller, S.: Efficient preconditioning of variational time discretization methods for parabolic partial differential equations. ESAIM: Math. Model. Numer. Anal. (2014). doi:10.1051/m2an/2014036 · Zbl 1315.65031
[12] 12.Bretherton, F.P.: The motion of long bubbles in tubes. J. Fluid Mech. 10, 166 (1961) · Zbl 0096.20702
[13] 13.Davies, R.M., Taylor, G.: The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 200(1062), 375-390 (1950)
[14] 14.Deuflhard, P., Bornemann, F.: Numerische Mathematik II. De Gruyter, Berlin (2002)
[15] 15.Dziuk, G.: An algorithm for evolutionary surfaces. Num. Math. 58, 603-611 (1991) · Zbl 0714.65092
[16] 16.Frank, R., Schneid, J., Ueberhuber, C.W.: Order results for implicit Runge-Kutta methods applied to stiff systems. SIAM J. Numer. Anal. 22(3), 515-534 (1985). · Zbl 0577.65056
[17] 17.Ganesan, S., Tobiska, L.: An accurate finite element scheme with moving meshes for computing 3D-axisymmetric interface flows. Int. J. Numer. Methods Fluids 57(2), 119-138 (2008). doi:10.1002/fld.1624 · Zbl 1138.76045
[18] 18.Ganesan, S., Matthies, G., Tobiska, L.: On spurious velocities in incompressible flow problems with interfaces. Comput. Methods Appl. Mech. Eng. 196(7), 1193-1202 (2007) · Zbl 1173.76338
[19] 19.Günther, A., Jhunjhunwala, M., Thalmann, M., Schmidt, M.A., Jensen, K.F.: Micromixing of miscible liquids in segmented gas-liquid flow. Langmuir 21(4), 1547-1555 (2005). doi:10.1021/la0482406
[20] 20.Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 2nd revised edition. Springer, Berlin (1991) · Zbl 0729.65051
[21] 21.Halpern, D., Gaver, P.: Boundary element analysis of the time-dependent motion of a semi-infinite bubble in a channel. J. Comput. Phys. 115(366), 366-375 (1994) · Zbl 0812.76049
[22] 22.Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353-384 (1990). doi:10.1137/0727022. · Zbl 0694.76014
[23] 23.Hussain, S., Schieweck, F., Turek, S.: Higher order Galerkin time discretization for nonstationary incompressible flow. In: Numerical Mathematics and Advanced Applications 2011, pp. 509-517. Springer, Heidelberg (2013) · Zbl 1273.76275
[24] 24.Hysing, S.: A new implicit surface tension implementation for interfacial flows. Int. J. Numer. Methods Fluids 51(6), 659-672 (2006) · Zbl 1158.76350
[25] 25.Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., Tobiska, L.: Quantitative benchmark computations of two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 60(11), 1259-1288 (2009). doi:10.1002/fld.1934 · Zbl 1273.76276
[26] 26.Kreutzer, M.T., Kapteijn, F., Moulijn, J.A., Heiszwolf, J.J.: Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels. Chem. Eng. Sci. 60(22), 5895-5916 (2005). doi:10.1016/j.ces.2005.03.022
[27] 27.Lang, J., Teleaga, I.: Higher-order linearly implicit one-step methods for three-dimensional incompressible Navier-Stokes equations. Stud. Univ. “Babeş-Bolyai” Math. LIII(1), 109-121 (2008) · Zbl 1201.76052
[28] 28.Lang, J., Verwer, J.: ROS3P - an accurate third-order Rosenbrock solver designed for parabolic problems. Bit Numer. Math. 41(4), 731-738 (2001) · Zbl 0996.65099
[29] 29.Lubich, C., Ostermann, A.: Linearly implicit time discretization of non-linear parabolic equations. IMA J. Numer. Anal. 15(4), 555-583 (1995) · Zbl 0834.65092
[30] 30.Lubich, C., Ostermann, A.: Runge-Kutta time discretization of reaction-diffusion and Navier-Stokes equations: nonsmooth-data error estimates and applications to long-time behaviour. Appl. Numer. Math. 22(1-3), 279-292 (1996). doi:10.1016/S0168-9274(96)00038-4. · Zbl 0872.65090
[31] 31.Matthies, G.: Finite Element Methods for Free Boundary Value Problems with Capillary Surfaces. Shaker, Aachen (2002)
[32] 32.Muradoglu, M., Günther, A., Stone, H.A.: A computational study of axial dispersion in segmented gas-liquid flow. Phys. Fluids 19(7) (2007). doi:10.1063/1.2750295 · Zbl 1182.76545
[33] 33.Rang, J., Angermann, L.: New Rosenbrock W-methods of order 3 for partial differential algebraic equations of index 1. Bit Numer. Math. 45, 761-787 (2005). doi:10.1007/s10543-005-0035-y · Zbl 1093.65097
[34] 34.Roy, S., Bauer, T., Al-Dahhan, M., Lehner, P., Turek, T.: Monoliths as multiphase reactors: a review. AIChE J. 50(11), 2918-2938 (2004). doi:10.1002/aic.10268
[35] 35.Rumpf, M.: A variational approach to optimal meshes. Numer. Math. 72, 523-540 (1996) · Zbl 0863.65075
[36] 36.Sanz-Serna, J., Verwer, J., Hundsdorfer, W.: Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential equations. Numer. Math. 50(4), 405-418 (1986). doi:10.1007/BF01396661 · Zbl 0589.65069
[37] 37.Schieweck, F., Matthies, G.: Higher order variational time discretizations for nonlinear systems of ordinary differential equations. Preprint 23/2011, Otto-von-Guericke-Universität Magdeburg (2011)
[38] 38.Sussman, M., Ohta, M.: A stable and efficient method for treating surface tension in incompressible two-phase flow. SIAM J. Sci. Comput. 31(4), 2447-2471 (2009) · Zbl 1387.76107
[39] 39.Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Lecture Notes in Mathematics, vol. 1054. Springer, Berlin (1984)
[40] 40.Verwer, J.: Convergence and order reduction of diagonally implicit Runge-Kutta schemes in the method of lines. Afdeling Numerieke Wiskunde: Band 8506 von Report NM, Centrum voor Wiskunde en Informatica Amsterdam (1985) · Zbl 0642.65066
[41] 41.Weismann, M.: The hybrid level set - front tracking approach. Master Thesis. Department Mathematics, University of Erlangen (2012) · Zbl 1426.76219
[42] 42.Weller, S.: Higher order time discretization for free surface flows. Diploma Thesis. Department Mathematics, University of Erlangen (2008)
[43] 43.Weller, S.: Higher order Galerkin methods in time for free surface flows. PAMM 14(1), 855-856 (2014). doi:10.1002/pamm.201410408
[44] 44.Weller, S.: Time discretization for capillary problems (2015).
[45] 45.Williams, J.L.: Monolith structures, materials, properties and uses. ChemInform 33(11) (2002). doi:10.1002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.