Abidi, Hammadi; Paicu, Marius On the global well-posedness of 3-D Navier-Stokes equations with vanishing horizontal viscosity. (English) Zbl 1449.35347 Differ. Integral Equ. 31, No. 5-6, 329-352 (2018). Summary: We study, in this paper, the axisymmetric 3-D Navier-Stokes system where the horizontal viscosity is zero. We prove the existence of a unique global solution to the system with initial data in Lebesgue spaces. Cited in 1 Document MSC: 35Q35 PDEs in connection with fluid mechanics 76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids 76D05 Navier-Stokes equations for incompressible viscous fluids 76D09 Viscous-inviscid interaction Keywords:axisymmetric Navier-Stokes system; axisymmetric solenoidal vector-field; Biot-Savart law PDF BibTeX XML Cite \textit{H. Abidi} and \textit{M. Paicu}, Differ. Integral Equ. 31, No. 5--6, 329--352 (2018; Zbl 1449.35347)