×

zbMATH — the first resource for mathematics

Ensemble grouping strategies for embedded stochastic collocation methods applied to anisotropic diffusion problems. (English) Zbl 1390.60229

MSC:
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] I. Babuška, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45 (2007), pp. 1005–1034. · Zbl 1151.65008
[2] I. Babuška, R. Tempone, and G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42 (2004), pp. 800–825. · Zbl 1080.65003
[3] J. Bäck, F. Nobile, L. Tamellini, and R. Tempone, Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: A numerical comparison, in Spectral and High Order Methods for Partial Differential Equations, Springer, New York, 2011, pp. 43–62. · Zbl 1216.65004
[4] C. G. Baker and M. A. Heroux, Tpetra, and the use of generic programming in scientific computing, Sci. Program., 20 (2012), pp. 115–128.
[5] A. Barth and A. Lang, Multilevel Monte Carlo method with applications to stochastic partial differential equations, Int. J. Comput. Math., 89 (2012), pp. 2479–2498. · Zbl 1270.65003
[6] A. Barth, A. Lang, and C. Schwab, Multilevel Monte Carlo method for parabolic stochastic partial differential equations, BIT, 53 (2013), pp. 3–27. · Zbl 1272.65009
[7] A. Barth, C. Schwab, and N. Zollinger, Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients, Numer. Math., 119 (2011), pp. 123–161. · Zbl 1230.65006
[8] E. Bavier, M. Hoemmen, S. Rajamanickam, and H. Thornquist, Amesos\(2\) and Belos: Direct and iterative solvers for large sparse linear systems, Sci. Program., 20 (2012), pp. 241–255.
[9] P. Bochev, H. C. Edwards, R. C. Kirby, K. Peterson, and D. Ridzal, Solving PDEs with Intrepid, Sci. Program., 20 (2012), pp. 151–180.
[10] P. B. Bochev, J. J. Hu, C. M. Siefert, and R. S. Tuminaro, An algebraic multigrid approach based on a compatible gauge reformulation of Maxwell’s equations, SIAM J. Sci. Comput., 31 (2008), pp. 557–583. · Zbl 1184.78007
[11] E. Boman, K. Devine, L. A. Fisk, R. Heaphy, B. Hendrickson, C. Vaughan, U. Catalyurek, D. Bozdag, W. Mitchell, and J. Teresco, Zoltan 3.0: Parallel Partitioning, Load-Balancing, and Data Management Services; User’s Guide, Tech. report, Sandia National Laboratories, 2007.
[12] H. J. Bungartz and M. Griebel, Sparse grids, Acta Numer., 13 (2004), pp. 147–269. · Zbl 1118.65388
[13] K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients, Comput. Vis. Sci., 14 (2011), pp. 3–15. · Zbl 1241.65012
[14] A. Cohen, R. DeVore, and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s, Anal. Appl., 9 (2011), pp. 11–47. · Zbl 1219.35379
[15] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan, Zoltan data management services for parallel dynamic applications, Computing Sci. Eng., 4 (2002), pp. 90–96.
[16] A. Doostan and H. Owhadi, A non-adapted sparse approximation of PDEs with stochastic inputs, J. Comput. Phys., 230 (2011), pp. 3015–3034. · Zbl 1218.65008
[17] H. C. Edwards, D. Sunderland, V. Porter, C. Amsler, and S. Mish, Manycore performance-portability: Kokkos multidimensional array library, Sci. Program., 20 (2012), pp. 89–114.
[18] H. C. Edwards, C. R. Trott, and D. Sunderland, Kokkos: Enabling manycore performance portability through polymorphic memory access patterns, J. Parallel Distributed Comput., 74 (2014), pp. 3202–3216.
[19] G. S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications, Springer Ser. Oper. Res., Springer, New York, 1996. · Zbl 0859.65001
[20] P. Frauenfelder, C. Schwab, and R. A. Todor, Finite elements for elliptic problems with stochastic coefficients, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 205–228. · Zbl 1143.65392
[21] D. Galindo, P. Jantsch, C. G. Webster, and G. Zhang, Accelerating Stochastic Collocation Methods for PDEs with Random Input Data, Tech. Report TM–2015/219, Oak Ridge National Laboratory, 2015. · Zbl 1352.65499
[22] B. Ganapathysubramanian and N. Zabaras, Sparse grid collocation schemes for stochastic natural convection problems, J. Comput. Phys., 225 (2007), pp. 652–685. · Zbl 1343.76059
[23] R. G. Ghanem and P. D. Spanos, Polynomial chaos in stochastic finite elements, J. Appl. Mech., 57 (1990). · Zbl 0729.73290
[24] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer, New York, 1991. · Zbl 0722.73080
[25] M. B. Giles, Multilevel Monte Carlo path simulation, Oper. Res., 56 (2008), pp. 607–617. · Zbl 1167.65316
[26] M. Griebel, Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences, Computing, 61 (1998), pp. 151–179. · Zbl 0918.65078
[27] M. Gunzburger, C. G. Webster, and G. Zhang, An adaptive wavelet stochastic collocation method for irregular solutions of partial differential equations with random input data, in Sparse Grids and Applications, Springer, New York, 2014, pp. 137–170. · Zbl 1316.65011
[28] M. D. Gunzburger, C. G. Webster, and G. Zhang, Stochastic finite element methods for partial differential equations with random input data, Acta Numer., 23 (2014), pp. 521–650. · Zbl 1398.65299
[29] J. C. Helton and F. J. Davis, Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems, Reliability Engineering System Safety, 81 (2003), pp. 23–69.
[30] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. B. Williams, and K. S. Stanley, An overview of the Trilinos package, ACM Trans. Math. Softw., 31 (2005).
[31] M. A. Heroux and J. M. Willenbring, A new overview of the Trilinos project, Sci. Program., 20 (2012), pp. 83–88.
[32] P. T. Lin, J. N. Shadid, R. S. Tuminaro, M. Sala, G. L. Hennigan, and R. P. Pawlowski, A parallel fully coupled algebraic multilevel preconditioner applied to multiphysics PDE applications: Drift-diffusion, flow/transport/reaction, resistive MHD, Internat. J. Numer. Methods Fluids, 64 (2010), pp. 1148–1179. · Zbl 1427.65036
[33] M. Loève, Probability Theory I, 4th ed., Grad. Texts in Math. 45, Springer, New York, 1977.
[34] M. Loève, Probability Theory II, 4th ed., Grad. Texts in Math. 46, Springer, New York, 1978.
[35] X. Ma and N. Zabaras, An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations, J. Comput. Phys., 228 (2009), pp. 3084–3113. · Zbl 1161.65006
[36] L. Mathelin and K. A. Gallivan, A compressed sensing approach for partial differential equations with random input data, Commun. Comput. Phys., 12 (2012), pp. 919–954. · Zbl 1388.65018
[37] M. D. McKay, R. J. Beckman, and W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21 (1979), pp. 239–245. · Zbl 0415.62011
[38] N. Metropolis and S. Ulam, The Monte Carlo method, J. Amer. Statist. Assoc., 44 (1949), pp. 335–341. · Zbl 0033.28807
[39] H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc., 84 (1978), pp. 957–1041. · Zbl 0404.65003
[40] F. Nobile, R. Tempone, and C. G. Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46 (2008), pp. 2411–2442. · Zbl 1176.65007
[41] F. Nobile, R. Tempone, and C. G. Webster, A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46 (2008), pp. 2309–2345. · Zbl 1176.65137
[42] L. N. Olson, J. Schroder, and R. S. Tuminaro, A new perspective on strength measures in algebraic multigrid, Numer. Linear Algebra Appl., 17 (2010), pp. 713–733. · Zbl 1240.65360
[43] R. P. Pawlowski, E. T. Phipps, and A. G. Salinger, Automating embedded analysis capabilities and managing software complexity in multiphysics simulation, Part I: Template-based generic programming, Sci. Program., 20 (2012), pp. 197–219.
[44] R. P. Pawlowski, E. T. Phipps, A. G. Salinger, S. J. Owen, C. M. Siefert, and M. L. Staten, Automating embedded analysis capabilities and managing software complexity in multiphysics simulation Part II: Application to partial differential equations, Sci. Program., 20 (2012), pp. 327–345.
[45] E. Phipps, M. D’Elia, H. C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanickam, Embedded ensemble propagation for improving performance, portability, and scalability of uncertainty quantification on emerging computational architectures, SIAM J. Sci. Comput., 39 (2017), pp. C162–C193. · Zbl 1365.65017
[46] E. T. Phipps, Stokhos Stochastic Galerkin Uncertainty Quantification Methods, (2015).
[47] A. Prokopenko, J. J. Hu, T. A. Wiesner, C. M. Siefert, and R. S. Tuminaro, MueLu User’s Guide 1.0, Tech. Report SAND2014-18874, Sandia National Laboratories, 2014.
[48] L. J. Roman and M. Sarkis, Stochastic Galerkin method for elliptic SPDEs: A white noise approach, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), pp. 941–955. · Zbl 1148.60043
[49] M. Sala and R. Tuminaro, A new Petrov–Galerkin smoothed aggregation preconditioner for nonsymmetric linear systems, SIAM J. Sci. Comput., 31 (2008), pp. 143–166. · Zbl 1183.76673
[50] S. A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk SSSR, 4 (1963), pp. 240–243. · Zbl 0202.39901
[51] M. Stoyanov, Hierarchy–Direction Selective Approach for Locally Adaptive Sparse Grids, Tech. Report TM–2013/384, Oak Ridge National Laboratory, 2013.
[52] M. Stoyanov and C. G. Webster, A Dynamically Adaptive Sparse Grid Method for Quasi-Optimal Interpolation of Multidimensional Analytic Functions, Tech. Report TM–2015/341, Oak Ridge National Laboratory, 2015.
[53] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press, New York, 2000.
[54] P. Vaněk, J. Mandel, and M. Brezina, Algebraic multigrid based on smoothed aggregation for second and fourth order problems, Computing, 56 (1996), pp. 179–196. · Zbl 0851.65087
[55] D. B. Xiu and J. S. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27 (2005), pp. 1118–1139. · Zbl 1091.65006
[56] D. B. Xiu and G. E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24 (2002), pp. 619–644. · Zbl 1014.65004
[57] A. C. Yücel, H. Ba\ugci, S. Hesthaven, and E. Michielssen, A fast stroud-based collocation method for statistically characterizing EMI/EMC phenomena on complex platforms, IEEE Trans. Electromagnetic Compatibility, 51 (2009), pp. 301–311.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.