×

zbMATH — the first resource for mathematics

Mean square formula for the double zeta-function. (English) Zbl 1407.11107
Summary: We prove the mean square formula of the Euler-Zagier type double zeta-function \(\zeta_{2}(s_{1},s_{2})\) and provide an improvement on the \(\Omega\) results of [the first author et al., Indag. Math., New Ser. 21, No. 1–2, 16–29 (2011; Zbl 1253.11084)]. We also calculate the double integral \(\int_{2}^{N}\int_{2}^{T}|\zeta_{2}(s_{1},s_{2})|^{2}dt_{1} dt_{2}\) under certain conditions.

MSC:
11M41 Other Dirichlet series and zeta functions
11M06 \(\zeta (s)\) and \(L(s, \chi)\)
Citations:
Zbl 1253.11084
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] S. Akiyama, S. Egami and Y. Tanigawa, An analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith. 98 (2001), 107-116. · Zbl 0972.11085
[2] F.V. Atkinson, The mean-value of the Riemann zeta-function, Acta Math. 81 (1949), 353-376. · Zbl 0036.18603
[3] R. Balasubramanian, A. Ivić and K. Ramachandra, The mean square of the Riemann zeta-function on the line \(σ=1\), Enseign. Math. (2) 38 (1992), 13-25. · Zbl 0753.11028
[4] S. Ikeda, K. Matsuoka and Y. Nagata, On certain mean values of the double zeta-function, Nagoya Math. J. 217 (2015), 161-190. · Zbl 1369.11066
[5] H. Ishikawa and K. Matsumoto, On the estimation of the order of Euler-Zagier multiple zeta-functions, Illinois J. Math. 47 (2003), 1151-1166. · Zbl 1094.11033
[6] A. Ivić, The Riemann Zeta-Function, John Wiley and Sons, New York, 1985 (2nd ed. Dover, 2003).
[7] A. Ivić, Mean Values of the Riemann Zeta Function, Lecture Note Ser.82. Tata Institute of Fundamental Research, Bombay, Berlin-Heidelberg-New York; Springer 1991.
[8] A. Ivić and K. Matsumoto, On the error term in the mean square formula for the Riemann zeta-function in the critical strip, Monatsh. Math. 121 (1996), 213-229. · Zbl 0843.11039
[9] I. Kiuchi and Y. Tanigawa, Bounds for double zeta-functions, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. Ser. V 5 (2006), 445-464. · Zbl 1170.11317
[10] I. Kiuchi, Y. Tanigawa and W. Zhai, Analytic properties of double zeta-functions, Indag. Math. 21 (2011), 16-29. · Zbl 1253.11084
[11] K. Matsumoto, On the analytic continuation of various multiple zeta-functions, in: “Number Theory for the Millennium, Proc. Millennial Conf. Number Theory”, Vol. II, M. A. Bennett et al. (eds.), A.K. Peters 2002, 417-440. · Zbl 1031.11051
[12] K. Matsumoto, Functional equations for double zeta-functions, Math. Proc. Cambridge Philos. Soc. 136 (2004), 1-7. · Zbl 1087.11058
[13] K. Matsumoto and H. Tsumura, Mean value theorems for the double zeta-function, J. Math. Soc. Japan. 67 (2015), 383-406. · Zbl 1355.11088
[14] E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, Second Edition, Edited and with a preface by D. R. Heath-Brown, The Clarendon Press, Oxford University Press, New York, 1986. · Zbl 0601.10026
[15] J.Q. Zhao, Analytic continuation of multiple zeta function, Proc. Amer. Math. Soc. 128 (2000), 1275-1283. · Zbl 0949.11042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.