Fleming, Joshua W.; Martínez-Pedroza, Eduardo Finiteness of homological filling functions. (English) Zbl 1494.20060 Involve 11, No. 4, 569-583 (2018). Summary: Let \(G\) be a group. For any \(\mathbb{Z}G\)-module \(M\) and any integer \(d>0\), we define a function \(\operatorname{FV}_{M}^{d+1}: \mathbb{N} \rightarrow \mathbb{N}\cup \{\infty\}\) generalizing the notion of \((d+1)\)-dimensional filling function of a group. We prove that this function takes only finite values if \(M\) is of type \(FP_{d+1}\) and \(d>0\), and remark that the asymptotic growth class of this function is an invariant of \(M\). In the particular case that \(G\) is a group of type \(FP_{d+1}\), our main result implies that its \((d+1)\)-dimensional homological filling function takes only finite values. Cited in 1 Document MSC: 20F65 Geometric group theory 20J05 Homological methods in group theory 57M07 Topological methods in group theory Keywords:Dehn functions; homological filling function; isoperimetric inequalities; finiteness properties of groups PDF BibTeX XML Cite \textit{J. W. Fleming} and \textit{E. Martínez-Pedroza}, Involve 11, No. 4, 569--583 (2018; Zbl 1494.20060) Full Text: DOI arXiv OpenURL References: [1] 10.1073/pnas.1207377110 · Zbl 1300.57003 [2] 10.1515/jgth.1999.008 · Zbl 0927.20021 [3] 10.1007/978-3-662-12494-9 [4] 10.1007/978-1-4684-9327-6 [5] 10.1112/jlms/54.2.261 · Zbl 0861.20033 [6] ; Gromov, Geometric group theory, II. London Math. Soc. Lecture Note Ser., 182, 1 (1993) [7] 10.1007/s11856-008-1070-6 · Zbl 1211.20038 [8] 10.4171/GGD/369 · Zbl 1388.20061 [9] 10.2140/agt.2010.10.1807 · Zbl 1202.20046 [10] 10.4153/CMB-2015-070-2 · Zbl 1360.20037 [11] 10.1515/jgth-2017-0020 · Zbl 1435.20059 [12] 10.1007/PL00004801 · Zbl 0954.20021 [13] 10.1090/memo/0843 · Zbl 1093.20025 [14] 10.4171/GGD/144 · Zbl 1263.20040 [15] 10.1007/s12220-015-9601-y · Zbl 1380.20045 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.