×

Evaluation of Tornheim’s type of double series. (English) Zbl 1434.11185

Summary: We examine values of certain Tornheim’s type of double series with odd weight. As a result, an affirmative answer to a conjecture about the parity theorem for the zeta function of the root system of the exceptional Lie algebra \(G_2\), proposed by Y. Komori et al. [Glasg. Math. J. 53, No. 1, 185–206 (2011; Zbl 1255.11042)], is given.

MSC:

11M32 Multiple Dirichlet series and zeta functions and multizeta values
17B22 Root systems

Citations:

Zbl 1255.11042

References:

[1] T. Arakawa, T. Ibukiyama and M. Kaneko, Bernoulli numbers and zeta functions, Springer Monographs in Mathematics, Springer, Tokyo, 2014. · Zbl 1312.11015
[2] J. G. Huard, K. S. Williams and N. Y. Zhang, On Tornheim’s double series, Acta Arith. 75 (1996), no. 2, 105-117. · Zbl 0858.40008
[3] K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compos. Math. 142 (2006), no. 2, 307-338. · Zbl 1186.11053
[4] Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated with semi-simple Lie algebras IV, Glasg. Math. J. 53 (2011), no. 1, 185-206. · Zbl 1255.11042 · doi:10.1017/S0017089510000613
[5] Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-function associated with semi-simple Lie algebras V, Glasg. Math. J. 57 (2015), no. 1, 107-130. · Zbl 1318.11114 · doi:10.1017/S0017089514000160
[6] T. Nakamura, A functional relation for the Tornheim double zeta function, Acta Arith. 125 (2006), no. 3, 257-263. · Zbl 1153.11047
[7] T. Nakamura, A simple proof of the functional relation for the Lerch type Tornheim double zeta function, Tokyo J. Math. 35 (2012), no. 2, 333-337. · Zbl 1276.11143
[8] T. Okamoto, Multiple zeta values related with the zeta-function of the root system of type \(A_2, B_2\) and \(G_2\), Comment. Math. Univ. St. Pauli 61 (2012), no. 1, 9-27. · Zbl 1321.11091
[9] T. Okamoto, On alternating analogues of the Mordell-Tornheim triple zeta values, J. Ramanujan Math. Soc. 28 (2013), no. 2, 247-269. · Zbl 1368.11101
[10] E. Panzer, The parity theorem for multiple polylogarithms, J. Number Theory 172 (2017), 93-113. · Zbl 1419.11109 · doi:10.1016/j.jnt.2016.08.004
[11] M. V. Subbarao and R. Sitaramachandra, On some infinite series of L. J. Mordell and their analogues, Pacific J. Math. 119 (1985), no. 1, 245-255. · Zbl 0573.10026
[12] L. Tornheim, Harmonic double series, Amer. J. Math. 72 (1950), 303-314. · Zbl 0036.17203 · doi:10.2307/2372034
[13] H. Tsumura, On alternating analogues of Tornheim’s double series, Proc. Amer. Math. Soc. 131 (2003), no. 12, 3633-3641. · Zbl 1045.11057
[14] H. Tsumura, Evaluation formulas for Tornheim’s type of alternating double series, Math. Comp. 73 (2004), no. 245, 251-258. · Zbl 1094.11034
[15] H. Tsumura, Combinatorial relations for Euler-Zagier sums, Acta Arith. 111 (2004), no. 1, 27-42. · Zbl 1153.11327
[16] H. Tsumura, On Mordell-Tornheim zeta values, Proc. Amer. Math. Soc. 133 (2005), 2387-2393. · Zbl 1059.40003
[17] H. Tsumura, On alternating analogues of Tornheim’s double series. II, Ramanujan J. 18 (2009), no. 1, 81-90. · Zbl 1192.11059
[18] J. Zhao, Multi-polylogs at twelfth roots of unity and special values of Witten multiple zeta function attached to the exceptional Lie algebra \(\mathfrak{g}_2 \), J. Algebra Appl. 9 (2010), no. 2, 327-337. · Zbl 1197.11108
[19] X. Zhou, T. Cai and D. M. Bradley, Signed \(q\)-analogs of Tornheim’s double series, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2689-2698. · Zbl 1204.11150
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.