Furuya, Jun; Minamide, T. Makoto; Tanigawa, Yoshio On representations of error terms related to the derivatives for some Dirichlet series. (English) Zbl 1427.11093 Ill. J. Math. 61, No. 1-2, 187-209 (2017). Summary: In previous papers, we examined several properties of an error term in a certain divisor problem related to the derivatives of the Riemann zeta-function. In this paper, we obtain representations of error terms related to the derivatives of some Dirichlet series, which can be regarded as generalized versions of a Dirichlet divisor problem and a Gauss circle problem. We also give the upper bounds of the error terms in terms of exponent pairs. MSC: 11N37 Asymptotic results on arithmetic functions 11M06 \(\zeta (s)\) and \(L(s, \chi)\) Keywords:Dirichlet series; Gauss circle problem × Cite Format Result Cite Review PDF Full Text: Euclid References: [1] T. M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. · Zbl 0335.10001 [2] D. Banerjee and M. Minamide, The average behaviour of the error term in a new kind of the divisor problem, J. Math. Anal. Appl. 438 (2016), no. 2, 533-550. · Zbl 1382.11050 · doi:10.1016/j.jmaa.2016.02.013 [3] X. Cao, J. Furuya, Y. Tanigawa and W. Zhai, A generalized divisor problem and the sum of Chowla and Walum, J. Math. Anal. Appl. 400 (2013), 15-21. · Zbl 1292.11106 · doi:10.1016/j.jmaa.2012.11.027 [4] X. Cao, J. Furuya, Y. Tanigawa and W. Zhai, A generalized divisor problem and the sum of Chowla and Walum II, Funct. Approx. Comment. Math. 49 (2013), 159-188. · Zbl 1293.11097 · doi:10.7169/facm/2013.49.1.10 [5] X. Cao, Y. Tanigawa and W. Zhai, On a conjecture of Chowla and Walum, Sci. China Math. 53 (2010), no. 10, 2755-2771. · Zbl 1266.11101 · doi:10.1007/s11425-010-4013-8 [6] S. Chowla, Contributions to the analytic theory of numbers, Math. Z. 35 (1932), 279-299. · Zbl 0004.10202 · doi:10.1007/BF01186560 [7] J. Furuya, M. Minamide and Y. Tanigawa, Representations and evaluations of the error term in a certain divisor problem, Math. Slovaca 66 (2016), 575-582. · Zbl 1389.11125 · doi:10.1515/ms-2015-0160 [8] J. Furuya, M. Minamide and Y. Tanigawa, On a new circle problem, J. Aust. Math. Soc. 103 (2017), 231-249. · Zbl 1430.11132 · doi:10.1017/S1446788716000525 [9] J. Furuya and Y. Tanigawa, On integrals and Dirichlet series obtained from the error term in the circle problem, Funct. Approx. Comment. Math. 51 (2014), no. 2, 303-333. · Zbl 1358.11106 · doi:10.7169/facm/2014.51.2.5 [10] S. W. Graham and G. Kolesnik, Van der Corput’s method for exponential sums, London Mathematical Society Lecture Note Series, vol. 126, Cambridge University Press, Cambridge, 1991. · Zbl 0713.11001 [11] D. R. Heath-Brown, The Piateckiǐ-Šapiro prime number theory, J. Number Theory 16 (1983), 242-266. · Zbl 0513.10042 · doi:10.1016/0022-314X(83)90044-6 [12] M. N. Huxley, Exponential sums and lattice points III, Proc. Lond. Math. Soc. 87 (2003), 591-609. · Zbl 1065.11079 · doi:10.1112/S0024611503014485 [13] A. Ivić, The Riemann zeta-function: Theory and applications, Dover Publications, Inc., Mineola, NY, 2003, Reprint of the 1985 original (Wiley). · Zbl 1034.11046 [14] E. Krätzel, Lattice points, Kluwer Acad. Publishers, Dordrecht, 1988. · Zbl 0675.10031 [15] M. Minamide, The truncated Voronoï formula for the derivative of the Riemann zeta function, Indian J. Math. 55 (2013), no. 3, 325-352. · Zbl 1295.11106 [16] Y.-F. S. Pétermann, Divisor problems and exponent pairs, Arch. Math. 50 (1988), 243-250. · Zbl 0619.10034 · doi:10.1007/BF01187741 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.