Efficient estimation in the partially linear quantile regression model for longitudinal data. (English) Zbl 1401.62061

The authors study efficient estimation for a quantile regression model with partially linear coefficients for longitudinal data where repeated measurements within each subject are likely to be correlated. They propose a weighted quantile approach for time-invariant and time varying coefficient estimation. The method is illustrated through a Multi-Center AIDS Cohort study.


62G08 Nonparametric regression and quantile regression
62G05 Nonparametric estimation
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI Euclid


[1] Cai, Z. and Xiao, Z. (2012). Semiparametric quantile regression estimation in dynamic models with partially varying coefficients., Journal of Econometrics 167, 413-425. · Zbl 1441.62623
[2] Cai, Z. and Xu, X. (2008). Nonparametric quantile estimations for dynamic smooth coefficient models., Journal of the American Statistical Association 103, 1595-1608. · Zbl 1286.62029
[3] Cho, H., Hong, H. G. and Kim, M. (2016). Efficient quantile marginal regression for longitudinal data with dropouts., Biostatistics 17, 561-575.
[4] Fan, J., Huang, T. and Li, R. Z. (2007). Analysis of longitudinal data with semiparametric estimation of covariance function., Journal of American Statistical Association 35, 632-641. · Zbl 1172.62323
[5] Fu, L. and Wang, Y. G. (2012). Quantile regression for longitudinal data with a working correlation model., Computational Statistics and Data Analysis 56, 2526-2538. · Zbl 1252.62046
[6] He, X., Fu, B. and Fung, W. K. (2003). Median regression for longitudinal data., Statistics in Medicine 22, 3655-3669.
[7] Huang, J. Z., Wu, C. O. and Zhou, L. (2002). Varying-coefficient models and basis function approximations for the analysis of repeated measurements., Biometrika 89, 111-128. · Zbl 0998.62024
[8] Jin, Z., Ying, Z. and Wei, L. J. (2001). A simple resampling method by perturbing the minimand., Biometrika 88, 381-390. · Zbl 0984.62033
[9] Jung, S. (1996). Quasi-likelihood for median regression models., Journal of the American Statistical Association 91, 251-257. · Zbl 0871.62060
[10] Kaslow, R. A., Ostrow, D. G., Detels, R., Phair, J. P., Polk, B. F. and Rinaldo, C. R. (1987). The multicenter AIDS cohort study: rationale, organization and selected characteristics of the participants., American Journal of Epidemiology 126, 310-318.
[11] Leng, C. and Zhang, W. (2014). Smoothing combined estimating equations in quantile regression for longitudinal data., Statistics and Computing 1, 123-136. · Zbl 1325.62141
[12] Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models., Biometrika 73, 12-22. · Zbl 0595.62110
[13] Lin, X. and Carroll, R. J. (2001). Semiparametric regression for clustered data using generalized estimating equations., Journal of the American Statistical Association 96, 1045-1056. · Zbl 1072.62566
[14] Lu, X. and Fan, Z. (2015). Weighted quantile regression for longitudinal data., Computational Statistics 30, 569-592. · Zbl 1317.65040
[15] Pollard, D. (1991). Asymptotics for least absolute deviation regression estimators., Econometric Theory 7, 186-199.
[16] Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating equations., The Annals of Statistics 22, 300-325. · Zbl 0799.62049
[17] Qu, A., Lindsay, B. G. and Li, B. (2000). Improving generalised estimating equations using quadratic inference functions., Biometrika 87, 823-836. · Zbl 1028.62045
[18] Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves., Journal of the Royal Statistical Society, Series B 53, 233-243. · Zbl 0800.62214
[19] Tang, C. Y. and Leng, C. (2011). Empirical likelihood and quantile regression in longitudinal data analysis., Biometrika 98, 1001-1006. · Zbl 1228.62050
[20] Tang, Y., Wang, Y., Li, J. and Qian, W. (2015). Improving estimation efficiency in quantile regression with longitudinal data., Journal of Statistical Planning and Inference 165, 38-55. · Zbl 1326.62096
[21] Wang, H. J., Zhu, Z. and Zhou, J. (2009). Quantile regression in partially linear varying coefficient models., The Annals of Statistics 37, 3841-3866. · Zbl 1191.62077
[22] Wu, C. O., Chiang, C. T. and Hoover, D. R. (1998). Asymptotic confidence regions for kernel model smoothing of a varying-coefficient with longitudinal data., Journal of the American Statistical Association 93, 1458-1476. · Zbl 1064.62523
[23] Wu, C. O. and Chiang, C. T. (2000). Kernel smoothing on varying coefficient models with longitudinal dependent variable., Statistica Sinica 10, 433-456. · Zbl 0945.62047
[24] Xue, L. and Zhu, L. (2007). Empirical likelihood for a varying coefficient model with longitudinal data., Journal of the American Statistical Association 102, 642-654. · Zbl 1172.62306
[25] Yu, K. and Jones, M. C. (1998). Local linear quantile regression., Journal of the American Statistical Association 93, 228-237. · Zbl 0906.62038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.