×

A MAC mode for lightweight block ciphers. (English) Zbl 1387.94092

Peyrin, Thomas (ed.), Fast software encryption. 23rd international conference, FSE 2016, Bochum, Germany, March 20–23, 2016. Revised selected papers. Berlin: Springer (ISBN 978-3-662-52992-8/pbk; 978-3-662-52993-5/ebook). Lecture Notes in Computer Science 9783, 43-59 (2016).
Summary: Lightweight cryptography strives to protect communication in constrained environments without sacrificing security. However, security often conflicts with efficiency, shown by the fact that many new lightweight block cipher designs have block sizes as low as 64 or 32 bits. Such low block sizes lead to impractical limits on how much data a mode of operation can process per key. MAC (message authentication code) modes of operation frequently have bounds which degrade with both the number of messages queried and the message length. We present a MAC mode of operation, LightMAC, where the message length has no effect on the security bound, allowing an order of magnitude more data to be processed per key. Furthermore, LightMAC is incredibly simple, has almost no overhead over the block cipher, and is parallelizable. As a result, LightMAC not only offers compact authentication for resource-constrained platforms, but also allows high-performance parallel implementations. We highlight this in a comprehensive implementation study, instantiating LightMAC with PRESENT and the AES. Moreover, LightMAC allows flexible trade-offs between rate and maximum message length. Unlike PMAC and its many derivatives, LightMAC is not covered by patents. Altogether, this makes it a promising authentication primitive for a wide range of platforms and use cases.
For the entire collection see [Zbl 1344.68014].

MSC:

94A60 Cryptography
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] 1.Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block ciphers - focus on the linear layer (feat. · Zbl 1317.94079
[2] 2.Baysal, A., Sahin, S.: RoadRunneR: a small and fast bitslice block cipher for low cost 8-bit processors. In: Güneysu, T., Leander, G., Moradi, A. (eds.) LightSec 2015. LNCS, vol. 9542, pp. 58-76. Springer, Heidelberg (2016). doi: · Zbl 1412.94153
[3] 3.Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint Archive, Report 2013/404 (2013). · Zbl 1382.94059
[4] 4.Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: new methods for message authentication using finite pseudorandom functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 15-28. Springer, Heidelberg (1995). doi: · Zbl 0876.94020
[5] 5.Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341-358. Springer, Heidelberg (1994). doi: · Zbl 0939.94554
[6] 6.Bellare, M., Pietrzak, K., Rogaway, P.: Improved security analyses for CBC MACs. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 527-545. Springer, Heidelberg (2005). doi: · Zbl 1145.94432
[7] 7.Benadjila, R., Guo, J., Lomné, V., Peyrin, T.: Implementing lightweight block ciphers on x86 architectures. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 324-352. Springer, Heidelberg (2014). doi: · Zbl 1362.94019
[8] 8.Bernstein, D.J.: How to stretch random functions: the security of protected counter sums. J. Cryptology 12(3), 185-192 (1999). doi: · Zbl 0937.94006
[9] 9.Biryukov, A. (ed.): FSE 2007. LNCS, vol. 4593. Springer, Heidelberg (2007) · Zbl 1143.68002
[10] 10.Black, J.A., Rogaway, P.: A block-cipher mode of operation for parallelizable message authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 384-397. Springer, Heidelberg (2002). doi: · Zbl 1056.94520
[11] 11.Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450-466. Springer, Heidelberg (2007). doi: · Zbl 1142.94334
[12] 12.Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçin, T.: PRINCE - a low-latency block cipher for pervasive computing applications - extended abstract. In: Wang, X., Sako, K. (eds.) [41], pp. 208-225. · Zbl 1292.94035
[13] 13.De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272-288. Springer, Heidelberg (2009). doi: · Zbl 1290.94060
[14] 14.Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie proposal: Noekeon. In: First Open Nessie Workshop (2000)
[15] 15.Daemen, J., Rijmen, V.: AES proposal: Rijndael. In: First Advanced Encryption Standard (AES) Conference (1998) · Zbl 1065.94005
[16] 16.Dodis, Y., Pietrzak, K.: Improving the security of MACs via randomized message preprocessing. In: Biryukov, A. (ed.) [9], pp. 414-433. · Zbl 1186.94434
[17] 17.Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 383-399. Springer, Heidelberg (2013). doi: · Zbl 1353.94048
[18] 18.Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1-18. Springer, Heidelberg (2012). doi:
[19] 19.Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bitslice encryption for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 18-37. Springer, Heidelberg (2015). doi: · Zbl 1382.94111
[20] 20.Gueron, S.: Intel Advanced Encryption Standard (AES) Instructions Set. Intel White paper, September 2012
[21] 21.Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED block cipher. In: Preneel, B., Takagi, T. (eds.) [35], pp. 326-341. · Zbl 1291.94092
[22] 22.Hong, D., Lee, J.-K., Kim, D.-C., Kwon, D., Ryu, K.H., Lee, D.-G.: LEA: a 128-bit block cipher for fast encryption on common processors. In: Kim, Y., Lee, H., Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267, pp. 1-24. Springer, Heidelberg (2014). doi:
[23] 23.Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: a new block cipher suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46-59. Springer, Heidelberg (2006). doi: · Zbl 1307.94058
[24] 24.Iwata, T., Kurosawa, K.: Stronger security bounds for OMAC, TMAC, and XCBC. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 402-415. Springer, Heidelberg (2003). doi:
[25] 25.Journault, A., Standaert, F.X., Varici, K.: Improving the security and efficiency of block ciphers based on LS-designs. In: Proceedings of the 9th International Workshop on Coding and Cryptography, WCC 2015 (2015) · Zbl 1402.94060
[26] 26.Karakoç, F., Demirci, H., Harmancı, A.E.: ITUbee: a software oriented lightweight block cipher. In: Avoine, G., Kara, O. (eds.) LightSec 2013. LNCS, vol. 8162, pp. 16-27. Springer, Heidelberg (2013). doi: · Zbl 1356.94065
[27] 27.Leander, G., Paar, C., Poschmann, A., Schramm, K.: New lightweight DES variants. In: Biryukov, A. (ed.) [9], pp. 196-210. · Zbl 1184.94241
[28] 28.Lim, C.H., Korkishko, T.: mCrypton - a lightweight block cipher for security of low-cost RFID tags and sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 243-258. Springer, Heidelberg (2006). doi:
[29] 29.Matsuda, S., Moriai, S.: Lightweight cryptography for the cloud: exploit the power of bitslice implementation. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 408-425. Springer, Heidelberg (2012). doi: · Zbl 1294.94063
[30] 30.Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Verbauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306-323. Springer, Heidelberg (2014). doi: · Zbl 1382.94145
[31] 31.Nandi, M.: Improved security analysis for OMAC as a pseudorandom function. J. Math. Cryptology 3(2), 133-148 (2009) · Zbl 1171.94359
[32] 32.Nandi, M., Mandal, A.: Improved security analysis of PMAC. J. Math. Cryptology 2(2), 149-162 (2008) · Zbl 1146.94009
[33] 33.Needham, R.M., Wheeler, D.J.: Tea extensions. Computer Laboratory, University of Cambridge (Technical report), October 1997.
[34] 34.Pietrzak, K.: A tight bound for EMAC. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 168-179. Springer, Heidelberg (2006). doi: · Zbl 1133.94334
[35] 35.Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg (2011). doi: · Zbl 1223.68010
[36] 36.Rivest, R.L.: The RC5 encryption algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 86-96. Springer, Heidelberg (1995). doi: · Zbl 0939.94553
[37] 37.Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) [35], pp. 342-357. · Zbl 1291.94154
[38] 38.Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher CLEFIA (extended abstract). In: Biryukov, A. (ed.) [9], pp. 181-195. · Zbl 1186.94471
[39] 39.Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: a scalable encryption algorithm for small embedded applications. In: Domingo-Ferrer, J., Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222-236. Springer, Heidelberg (2006). doi: · Zbl 1333.94048
[40] 40.Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: · Zbl 1327.94075
[41] 41.Wang, X., Sako, K. (eds.): ASIACRYPT 2012. LNCS, vol. 7658. Springer, Heidelberg (2012). doi: · Zbl 1258.94006
[42] 42.Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327-344. Springer, Heidelberg (2011). doi: · Zbl 1250.94047
[43] 43.Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The simeck family of lightweight block ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 307-329. Springer, Heidelberg (2015). doi: · Zbl 1380.94132
[44] 44.Yasuda, K.: The sum of CBC MACs is a secure PRF. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 366-381. Springer, Heidelberg (2010). doi: · Zbl 1274.94125
[45] 45.Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596-609. Springer, Heidelberg (2011). doi: · Zbl 1290.94139
[46] 46.Yasuda, K.: PMAC with parity: minimizing the query-length influence. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 203-214. Springer, Heidelberg (2012). doi: · Zbl 1292.94156
[47] 47.Zhang, L., Wu, W., Sui, H., Wang, P.: 3kf9: enhancing 3GPP-MAC beyond the birthday bound. In: Wang, X., Sako, K. (eds.) [41], pp. 296-312. · Zbl 1292.94162
[48] 48.Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE: A Bit-slice Lightweight Block Cipher Suitable for Multiple Platforms. Cryptology ePrint Archive, Report 2014/084 (2014).
[49] 49.Zhang, Y.: Using an error-correction code for fast, beyond-birthday-bound authentication. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 291-307. Springer, Heidelberg (2015). doi: · Zbl 1382.94173
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.