×

zbMATH — the first resource for mathematics

Squashed, magnetized black holes in \(D=5\) minimal gauged supergravity. (English) Zbl 1387.83097
Summary: We construct a new class of black hole solutions in five-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant. These configurations are cohomogeneity-1, with two equal-magnitude angular momenta. In the generic case, they possess a non-vanishing magnetic potential at infinity with a boundary metric which is the product of time and a squashed three-dimensional sphere. Both extremal and non-extremal black holes are studied. The non-extremal black holes satisfying a certain relation between electric charge, angular momenta and magnitude of the magnetic potential at infinity do not trivialize in the limit of vanishing event horizon size, becoming particle-like (non-topological) solitonic configurations. Among the extremal black holes, we show the existence of a new one-parameter family of supersymmetric solutions, which bifurcate from a critical Gutowski-Reall configuration.

MSC:
83E50 Supergravity
83C57 Black holes
83C22 Einstein-Maxwell equations
58J28 Eta-invariants, Chern-Simons invariants
Software:
COLSYS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253, (1998) · Zbl 0914.53048
[2] Maldacena, JM, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113, (1999) · Zbl 0969.81047
[3] Cvetič, M.; etal., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys., B 558, 96, (1999) · Zbl 0951.83033
[4] J.P. Gauntlett, E. O Colgain and O. Varela, Properties of some conformal field theories with M-theory duals, JHEP02 (2007) 049 [hep-th/0611219] [INSPIRE]. · Zbl 1342.81561
[5] Chong, ZW; Cvetič, M.; Lü, H.; Pope, CN, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett., 95, 161301, (2005) · Zbl 1248.83052
[6] Cvetič, M.; Lü, H.; Pope, CN, Charged Kerr-de Sitter black holes in five dimensions, Phys. Lett., B 598, 273, (2004) · Zbl 1247.83077
[7] Chong, ZW; Cvetič, M.; Lü, H.; Pope, CN, Non-extremal rotating black holes in five-dimensional gauged supergravity, Phys. Lett., B 644, 192, (2007) · Zbl 1248.83052
[8] Chong, ZW; Cvetič, M.; Lü, H.; Pope, CN, Five-dimensional gauged supergravity black holes with independent rotation parameters, Phys. Rev., D 72, (2005)
[9] Cvetič, M.; Lü, H.; Pope, CN, charged rotating black holes in five dimensional U(1)\^{3}gauged N = 2 supergravity, Phys. Rev., D 70, (2004)
[10] Gutowski, JB; Reall, HS, supersymmetric AdS_{5}black holes, JHEP, 02, 006, (2004)
[11] Blázquez-Salcedo, JL; Kunz, J.; Navarro-Lérida, F.; Radu, E., AdS_{5}magnetized solutions in minimal gauged supergravity, Phys. Lett., B 771, 52, (2017) · Zbl 1372.83071
[12] D’Hoker, E.; Kraus, P., charged magnetic brane solutions in AdS_{5}and the fate of the third law of thermodynamics, JHEP, 03, 095, (2010) · Zbl 1271.83047
[13] D’Hoker, E.; Kraus, P., Magnetic brane solutions in AdS, JHEP, 10, 088, (2009)
[14] D’Hoker, E.; Kraus, P., magnetic field induced quantum criticality via new asymptotically AdS_{5}solutions, Class. Quant. Grav., 27, 215022, (2010) · Zbl 1206.83072
[15] Copsey, K.; Horowitz, GT, gravity dual of gauge theory on S\^{2} × \(S\)\^{1} × \(R\), JHEP, 06, 021, (2006)
[16] Caldarelli, MM; Emparan, R.; Rodriguez, MJ, Black rings in (anti)-de Sitter space, JHEP, 11, 011, (2008)
[17] Figueras, P.; Tunyasuvunakool, S., Black rings in global anti-de Sitter space, JHEP, 03, 149, (2015) · Zbl 1388.83439
[18] Mann, RB; Radu, E.; Stelea, C., Black string solutions with negative cosmological constant, JHEP, 09, 073, (2006)
[19] Cassani, D.; Martelli, D., the gravity dual of supersymmetric gauge theories on a squashed S\^{1} × \(S\)\^{3}, JHEP, 08, 044, (2014)
[20] J.L. Blázquez-Salcedo, J. Kunz, F. Navarro-Lérida and E. Radu, New black holes in D = 5 minimal gauged supergravity: deformed boundaries and ‘frozen’ horizons, arXiv:1711.08292 [INSPIRE]. · Zbl 1294.83098
[21] Blázquez-Salcedo, JL; Kunz, J.; Navarro-Lérida, F.; Radu, E., Charged rotating black holes in Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant, Phys. Rev., D 95, (2017)
[22] Nedkova, PG; Yazadjiev, SS, Magnetized black hole on Taub-NUT instanton, Phys. Rev., D 85, (2012)
[23] Nedkova, PG; Yazadjiev, SS, New magnetized squashed black holes — thermodynamics and Hawking radiation, Eur. Phys. J., C 73, 2377, (2013)
[24] M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, Rotating black holes in gauged supergravities: thermodynamics, supersymmetric limits, topological solitons and time machines, hep-th/0504080 [INSPIRE]. · Zbl 1248.83069
[25] Sahoo, B.; Yee, H-U, Electrified plasma in AdS/CFT correspondence, JHEP, 11, 095, (2010) · Zbl 1294.83098
[26] C. Fefferman and R. Graham, Conformal invariants, in Élie Cartan et les mathématiques d’aujourd’hui, Astérisque, France, (1985), pg. 95. · Zbl 1162.81412
[27] Bernamonti, A.; Caldarelli, MM; Klemm, D.; Olea, R.; Sieg, C.; Zorzan, E., black strings in AdS_{5}, JHEP, 01, 061, (2008)
[28] Benetti Genolini, P.; Cassani, D.; Martelli, D.; Sparks, J., Holographic renormalization and supersymmetry, JHEP, 02, 132, (2017) · Zbl 1377.81201
[29] Balasubramanian, V.; Kraus, P., A stress tensor for anti-de Sitter gravity, Commun. Math. Phys., 208, 413, (1999) · Zbl 0946.83013
[30] Skenderis, K., Asymptotically anti-de Sitter space-times and their stress energy tensor, Int. J. Mod. Phys., A 16, 740, (2001) · Zbl 0982.83007
[31] Henningson, M.; Skenderis, K., The holographic Weyl anomaly, JHEP, 07, 023, (1998) · Zbl 0958.81083
[32] Henningson, M.; Skenderis, K., Holography and the Weyl anomaly, Fortsch. Phys., 48, 125, (2000) · Zbl 0976.81093
[33] Haro, S.; Solodukhin, SN; Skenderis, K., Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys., 217, 595, (2001) · Zbl 0984.83043
[34] M. Taylor, More on counterterms in the gravitational action and anomalies, hep-th/0002125 [INSPIRE].
[35] Blázquez-Salcedo, JL; Kunz, J.; Navarro-Lérida, F.; Radu, E., Radially excited rotating black holes in Einstein-Maxwell-Chern-Simons theory, Phys. Rev., D 92, (2015)
[36] Kunz, J.; Navarro-Lérida, F.; Viebahn, J., Charged rotating black holes in odd dimensions, Phys. Lett., B 639, 362, (2006) · Zbl 1248.83071
[37] Kunz, J.; Navarro-Lérida, F., Negative horizon mass for rotating black holes, Phys. Lett., B 643, 55, (2006) · Zbl 1248.83069
[38] J. Kunz, F. Navarro-Lérida and E. Radu, Higher dimensional rotating black holes in Einstein-Maxwell theory with negative cosmological constant, Phys. Lett.B 649 (2007) 463 [gr-qc/0702086] [INSPIRE]. · Zbl 1248.83070
[39] Ascher, U.; Christiansen, J.; Russell, RD, A collocation solver for mixed order systems of boundary value problems, Math. Comput., 33, 659, (1979) · Zbl 0407.65035
[40] Ascher, U.; Christiansen, J.; Russell, RD, Collocation software for boundary-value odes, ACM Trans. Math. Software, 7, 209, (1981) · Zbl 0455.65067
[41] Ishihara, H.; Matsuno, K., Kaluza-Klein black holes with squashed horizons, Prog. Theor. Phys., 116, 417, (2006) · Zbl 1120.83304
[42] Brihaye, Y.; Kunz, J.; Radu, E., from black strings to black holes: nuttier and squashed AdS_{5}solutions, JHEP, 08, 025, (2009)
[43] Murata, K.; Nishioka, T.; Tanahashi, N., warped AdS_{5}black holes and dual CFTs, Prog. Theor. Phys., 121, 941, (2009) · Zbl 1171.83336
[44] Gregory, R.; Laflamme, R., Black strings and p-branes are unstable, Phys. Rev. Lett., 70, 2837, (1993) · Zbl 1051.83544
[45] Brihaye, Y.; Delsate, T.; Radu, E., On the stability of AdS black strings, Phys. Lett., B 662, 264, (2008) · Zbl 1282.83055
[46] Som, MM; Raychaudhuri, AK, Cylindrically symmetric charged dust distributions in rigid rotation in general relativity, Proc. Roy. Soc. Lond., A 304, 81, (1968)
[47] Cassani, D.; Martelli, D., Supersymmetry on curved spaces and superconformal anomalies, JHEP, 10, 025, (2013) · Zbl 1342.81561
[48] Herdeiro, C.; Radu, E., Anti-de-Sitter regular electric multipoles: towards Einstein-Maxwell-AdS solitons, Phys. Lett., B 749, 393, (2015) · Zbl 1364.83034
[49] Herdeiro, C.; Radu, E., Einstein-Maxwell-anti-de-Sitter spinning solitons, Phys. Lett., B 757, 268, (2016) · Zbl 1360.83053
[50] Herdeiro, CA; Radu, E., Static Einstein-Maxwell black holes with no spatial isometries in AdS space, Phys. Rev. Lett., 117, 221102, (2016)
[51] Blázquez-Salcedo, JL; Kunz, J.; Navarro-Lérida, F.; Radu, E., Static Einstein-Maxwell magnetic solitons and black holes in an odd dimensional AdS spacetime, Entropy, 18, 438, (2016)
[52] P. Chrusciel and E. Delay, Non-singular space-times with a negative cosmological constant: II. Static solutions of the Einstein-Maxwell equations, Lett. Math. Phys.107 (2017) 1391 [arXiv:1612.00281] [INSPIRE]. · Zbl 1374.83005
[53] Chrusciel, PT; Delay, E.; Klinger, P., Nonsingular spacetimes with a negative cosmological constant: stationary solutions with matter fields, Phys. Rev., D 95, 104039, (2017)
[54] Chamblin, A.; Emparan, R.; Johnson, CV; Myers, RC, Large-N phases, gravitational instantons and the nuts and bolts of AdS holography, Phys. Rev., D 59, (1999)
[55] Emparan, R.; Johnson, CV; Myers, RC, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev., D 60, 104001, (1999)
[56] Clarkson, R.; Fatibene, L.; Mann, RB, thermodynamics of (\(d\) + 1)-dimensional NUT charged AdS space-times, Nucl. Phys., B 652, 348, (2003) · Zbl 1010.83049
[57] Astefanesei, D.; Mann, RB; Radu, E., Nut charged space-times and closed timelike curves on the boundary, JHEP, 01, 049, (2005)
[58] Astefanesei, D.; Mann, RB; Radu, E., Breakdown of the entropy/area relationship for NUT-charged spacetimes, Phys. Lett., B 620, 1, (2005)
[59] Yonge, MD, AdS Taub-NUT space and the O(\(N\) ) vector model on a squashed 3-sphere, JHEP, 07, 004, (2007)
[60] J.P. Gauntlett and J.B. Gutowski, All supersymmetric solutions of minimal gauged supergravity in five-dimensions, Phys. Rev.D 68 (2003) 105009 [Erratum ibid.D 70 (2004) 089901] [hep-th/0304064] [INSPIRE]. · Zbl 1045.83001
[61] Behrndt, K.; Klemm, D., Black holes in Gödel type universes with a cosmological constant, Class. Quant. Grav., 21, 4107, (2004) · Zbl 1061.83037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.