×

zbMATH — the first resource for mathematics

Control design and experimental validation for flexible multi-body systems pre-compensated by inverse shapers. (English) Zbl 1386.93136
Summary: A complex methodology for control of flexible multi-body systems is proposed with the objective to achieve a favorable distribution of system motion so that the oscillatory mode of the flexible part is not excited. As the key element, the recently proposed concept of a feedback loop with an inverse distributed delay shaper is adopted. Unlike in existing works, the mutual coupling between the primary (controlled) structure and secondary (flexible) structure of oscillatory nature is explicitly taken into account in the controller design. First, an easy to apply method to isolate the flexible mode to be targeted in the shaper design is proposed. Secondly, the interconnection of the system, shaper and the controller is formulated as a set of delay differential algebraic equations. Then, the spectral optimization control design technique is applied to achieve fast dynamics of the infinite dimensional system. The viability of the overall methodology is validated by both simulations and experiments in an extensive case study example.
Reviewer: Reviewer (Berlin)
MSC:
93B52 Feedback control
93B51 Design techniques (robust design, computer-aided design, etc.)
93C15 Control/observation systems governed by ordinary differential equations
70Q05 Control of mechanical systems
Software:
HANSO
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Smith, O. J., Posicast control of damped oscillatory systems, Proc. IRE, 45, 9, 1249-1255, (1957)
[2] Singer, N. C.; Seering, W. P., Preshaping command inputs to reduce system vibration, J. Dyn. Syst. Meas. Control, 112, 1, 76-82, (1990)
[3] Singhose, W.; Seering, W.; Singer, N., Residual vibration reduction using vector diagrams to generate shaped inputs, J. Mech. Des., 116, 2, 654-659, (1994)
[4] Sung, Y.-G.; Singhose, W., Robustness analysis of input shaping commands for two-mode flexible systems, IET Control Theory Appl., 3, 6, 722-730, (2009)
[5] Tuttle, T. D.; Seering, W. P., A zero-placement technique for designing shaped inputs to suppress multiple-mode vibration, (American Control Conference, 1994, Vol. 3, (1994), IEEE), 2533-2537
[6] Cole, M. O., A discrete-time approach to impulse-based adaptive input shaping for motion control without residual vibration, Automatica, 47, 11, 2504-2510, (2011) · Zbl 1228.93068
[7] Vaughan, J.; Kim, D.; Singhose, W., Control of tower cranes with double-pendulum payload dynamics, IEEE Trans. Control Syst. Technol., 18, 6, 1345-1358, (2010)
[8] Singhose, W.; Kim, D.; Kenison, M., Input shaping control of double-pendulum bridge crane oscillations, J. Dyn. Syst. Meas. Control, 130, 3, 034504, (2008)
[9] Singhose, W., Command shaping for flexible systems: A review of the first 50 years, Int. J. Precis. Eng. Manuf., 10, 4, 153-168, (2009)
[10] Smith, O. J., Feedback control systems, 331-345, (1958), McGraw-Hill Book Co., Inc. New York
[11] Vyhlídal, T.; Hromčík, M.; Kučera, V.; Anderle, M., On feedback architectures with zero vibration signal shapers, IEEE Trans. Automat. Control, 61, 8, 2049-2064, (2016) · Zbl 1359.93307
[12] Hung, J. Y., Feedback control with posicast, IEEE Trans. Ind. Electron., 50, 1, 94-99, (2003)
[13] Huey, J. R.; Singhose, W., Trends in the stability properties of CLSS controllers: a root-locus analysis, IEEE Trans. Control Syst. Technol., 18, 5, 1044-1056, (2010)
[14] Staehlin, U.; Singh, T., Design of closed-loop input shaping controllers, (American Control Conference, 2003. Proceedings of the 2003, Vol. 6, (2003), IEEE), 5167-5172
[15] Vyhlídal, T.; Hromčík, M.; Kučera, V., Inverse signal shapers in effective feedback architecture, (Proc. European Control Conference, (2013), IEEE), 4418-4423
[16] Vyhlídal, T.; Hromčík, M.; Kučera, V.; Anderle, M., Double oscillatory mode compensation by inverse signal shaper with distributed delays, (Control Conference, ECC, 2014 European, (2014), IEEE), 1121-1126
[17] Vyhlídal, T.; Kučera, V.; Hromčík, M., Signal shaper with a distributed delay: spectral analysis and design, Automatica, 49, 11, 3484-3489, (2013) · Zbl 1315.93033
[18] Vyhlídal, T.; Kučera, V.; Hromčík, M., Zero vibration shapers with distributed delays of various types, (Decision and Control, CDC, 2013 IEEE 52nd Annual Conference on, (2013), IEEE), 940-945
[19] Vyhlídal, T.; Hromčík, M., Parameterization of input shapers with delays of various distribution, Automatica, 59, 256-263, (2015) · Zbl 1326.93053
[20] Pilbauer, D.; Michiels, W.; Vyhlídal, T., A comparison of shaper-based and shaper-free architectures for feedforward compensation of flexible modes, (Valmorbida, G.; Seuret, A.; Sipahi, R.; Boussaada, I., Advances in Delays and Dynamics, Delays and Interconnections: Methodology, Algorithms and Applications, (2016), Springer), Available as TW672 Report, Department of Computer Science, KU Leuven
[21] Hromcik, M.; Vyhlidal, T., Inverse feedback shapers for coupled multibody systems, IEEE Trans. Automat. Control, 62, 9, 4804-4810, (2017) · Zbl 1390.93338
[22] Michiels, W., Spectrum-based stability analysis and stabilisation of systems described by delay differential algebraic equations, IET Control Theory Appl., 5, 16, 1829-1842, (2011)
[23] D. Pilbauer, T. Vyhlídal, W. Michiels, Spectral design of output feedback controllers for systems pre-compensated by input shapers, in: Proceedings of the 12th IFAC Workshop on Time-Delay Systems, 2015, pp. 1-6. http://dx.doi.org/10.1016/j.ifacol.2015.09.363.
[24] Vandewalle, S.; Michiels, W.; Verheyden, K.; Vanbiervliet, J., A nonsmooth optimisation approach for the stabilisation of time-delay systems, ESAIM Control Optim. Calc. Var., 14, 3, 478-493, (2008) · Zbl 1146.65056
[25] Ramírez, A.; Mondié, S.; Garrido, R.; Sipahi, R., Design of proportional-integral-retarded (PIR) controllers for second-order LTI systems, IEEE Trans. Automat. Control, 61, 6, 1688-1693, (2016) · Zbl 1359.93306
[26] Boussaada, I.; Morărescu, I.-C.; Niculescu, S.-I., Inverted pendulum stabilization: characterization of codimension-three triple zero bifurcation via multiple delayed proportional gains, Systems Control Lett., 82, 1-9, (2015) · Zbl 1327.93322
[27] Vaughan, J.; Yano, A.; Singhose, W., Comparison of robust input shapers, J. Sound Vib., 315, 4, 797-815, (2008)
[28] Pilbauer, D.; Michiels, W.; Vyhlídal, T., Distributed delay input shaper design by optimizing smooth kernel functions, J. Franklin Inst. B, 354, 13, 5463-5485, (2017) · Zbl 1395.93218
[29] Michiels, W.; Roose, D., An eigenvalue based approach for the robust stabilization of linear time-delay systems, Internat. J. Control, 76, 7, 678-686, (2003) · Zbl 1039.93059
[30] Michiels, W.; Vyhlídal, T.; Zítek, P., Control design for time-delay systems based on quasi-direct pole placement, J. Process Control, 20, 3, 337-343, (2010)
[31] Kevickzy, L.; Bányász, C., Two-degree-of-freedom control systems: the youla parameterization approach, (2015), Academic Press
[32] M. Overton, HANSO: a hybrid algorithm for nonsmooth optimization, 2009. Available from http://cs.nyu.edu/overton/software/hanso.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.