An adaptive FEM with ITP approach for steady Schrödinger equation. (English) Zbl 1390.65147

Summary: In this paper, an adaptive numerical method is proposed for solving a 2D Schrödinger equation with an imaginary time propagation approach. The differential equation is first transferred via a Wick rotation to a real time-dependent equation, whose solution corresponds to the ground state of a given system when time approaches infinity. The temporal equation is then discretized spatially via a finite element method, and temporally utilizing a Crank-Nicolson scheme. A moving mesh strategy based on harmonic maps is considered to eliminate possible singular behaviour of the solution. Several linear and nonlinear examples are tested by using our method. The experiments demonstrate clearly that our method provides an effective way to locate the ground state of the equations through underlying eigenvalue problems.


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35Q40 PDEs in connection with quantum mechanics
Full Text: DOI


[1] W. Bao, Ground states and dynamics of multicomponent Bose-Einstein condensates, Multiscale Model. Simul. 2(2) (2004), pp. 210-236. doi: 10.1137/030600209 · Zbl 1062.82034
[2] G. Bao, G. Hu, and D. Liu, Numerical solution of the Kohn-Sham equation by finite element methods with an adaptive mesh redistribution technique, J. Sci. Comput. 55(2) (2013), pp. 372-391. doi: 10.1007/s10915-012-9636-1 · Zbl 1272.82003
[3] M. Caliari, A. Ostermann, S. Rainer, and M. Thalhammer, A minimisation approach for computing the ground state of Gross-Pitaevskii systems, J. Comput. Phys. 228(2) (2009), pp. 349-360. doi: 10.1016/j.jcp.2008.09.018 · Zbl 1159.82311
[4] S.A. Chin, S. Janecek, and E. Krotscheck, Any order imaginary time propagation method for solving the Schrödinger equation, Chem. Phys. Lett. 470(4) (2009), pp. 342-346. doi: 10.1016/j.cplett.2009.01.068
[5] M.L. Chiofalo, S. Succi, and M.P. Tosi, Ground state of trapped interacting Bose-Einstein condensates by an explicit imaginary-time algorithm, Phys. Rev. E 62(5) (2000), pp. 7438.7444 doi: 10.1103/PhysRevE.62.7438
[6] C-C. Chou and D.J. Kouri, Multidimensional supersymmetric quantum mechanics: A scalar Hamiltonian approach to excited states by the imaginary time propagation method, J. Phys. Chem. A 117(16) (2013), pp. 3449-3457. doi: 10.1021/jp401068w
[7] Y. Di, R. Li, and T. Tang, A general moving mesh framework in 3D and its application for simulating the mixture of multi-phase flows, Commun. Comput. Phys. 3(3) (2008), pp. 582-602. · Zbl 1195.76252
[8] A.S. Dvinsky, Adaptive grid generation from harmonic maps on Riemannian manifolds, J. Comput. Phys. 95(2) (1991), pp. 450-476. doi: 10.1016/0021-9991(91)90285-S · Zbl 0733.65074
[9] J. Eells and J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86(1) (1964), pp. 109-160. doi: 10.2307/2373037 · Zbl 0122.40102
[10] J.-L. Fattebert and M.B. Nardelli, Finite difference methods for ab initio electronic structure and quantum transport calculations of nanostructures, Handb. Numer. Anal. 10 (2003), pp. 571-612. · Zbl 1066.81505
[11] C. Fiolhais, F. Nogueira, and M.A.L. Marques, A Primer in Density Functional Theory, Vol. 620, Springer-Verlag, Berlin, 2003. · Zbl 1030.00046
[12] J. Geiser, Fourth-order splitting methods for time-dependant differential equations, Numer. Math. Theor. Methods Appl. 1(3) (2008), pp. 321-339. · Zbl 1174.35408
[13] E.P. Gross, Structure of a quantized vortex in boson systems, Il Nuovo Cimento Series 10 20(3) (1961), pp. 454-477. doi: 10.1007/BF02731494 · Zbl 0100.42403
[14] G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16) (1996), p. 11169. doi: 10.1103/PhysRevB.54.11169
[15] L. Lehtovaara, J. Toivanen, and J. Eloranta, Solution of time-independent Schrödinger equation by the imaginary time propagation method, J. Comput. Phys. 221(1) (2007), pp. 148-157. doi: 10.1016/j.jcp.2006.06.006 · Zbl 1110.65096
[16] R. Li, T. Tang, and P. Zhang, Moving mesh methods in multiple dimensions based on harmonic maps, J. Comput. Phys. 170(2) (2001), pp. 562-588. doi: 10.1006/jcph.2001.6749
[17] R. Li, T. Tang, and P. Zhang, A moving mesh finite element algorithm for singular problems in two and three space dimensions, J. Comput. Phys. 177(2) (2002), pp. 365-393. doi: 10.1006/jcph.2002.7002
[18] J.C. Light, I.P. Hamilton, and J.V. Lill, Generalized discrete variable approximation in quantum mechanics, J. Chem. Phys. 82(3) (1985), pp. 1400-1409. doi: 10.1063/1.448462
[19] L. Lin, J. Lu, L. Ying, and E. Weinan, Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation, J. Comput. Phys. 231(4) (2012), pp. 2140-2154. doi: 10.1016/j.jcp.2011.11.032 · Zbl 1251.82008
[20] K. Majava, R. Glowinski, and T. Kärkkäinen, Solving a non-smooth eigenvalue problem using operator-splitting methods, Int. J. Comput. Math. 84(6) (2007), pp. 825-846. doi: 10.1080/00207160701458245 · Zbl 1130.65112
[21] R.I. McLachlan, G. Reinout, and W. Quispel, Splitting methods, Acta Numer. 11 (2002), pp. 341-434. doi: 10.1017/S0962492902000053 · Zbl 1105.65341
[22] J.E. Pask and P.A. Sterne, Finite element methods in ab initio electronic structure calculations, Model. Simul. Mater. Sci. Eng. 13(3) (2005), pp. R71-R96 doi: 10.1088/0965-0393/13/3/R01
[23] L.P. Pitaevskii, Vortex lines in an imperfect bose gas, Sov. Phys. JETP 13(2) (1961), pp. 451-454.
[24] B. Satarić, V. Slavnić, A. Belić, A. Balaž, P. Muruganandam, and S.K. Adhikari, Hybrid OpenMP/MPI programs for solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap, Comput. Phys. Commun. 200 (2016), pp. 411-417. doi: 10.1016/j.cpc.2015.12.006
[25] G. Strang, On the construction and comparison of difference schemes, SIAM. J. Numer. Anal. 5(3) (1968), pp. 506-517. doi: 10.1137/0705041 · Zbl 0184.38503
[26] P. Suryanarayana, V. Gavini, T. Blesgen, K. Bhattacharya, and M. Ortiz, Non-periodic finite-element formulation of Kohn-Sham density functional theory, J. Mech. Phys. Solids 58(2) (2010), pp. 256-280. doi: 10.1016/j.jmps.2009.10.002 · Zbl 1193.81006
[27] T. Torsti, T. Eirola, J. Enkovaara, T. Hakala, P. Havu, V. Havu, T. Höynälänmaa, J. Ignatius, M. Lyly, I. Makkonen, T.T. Rantala, J. Ruokolainen, K. Ruotsalainen, E. Räsänen, H. Saarikoski, and M.J. Puska, Three real-space discretization techniques in electronic structure calculations, Physica Status Solidi (b) 243(5) (2006), pp. 1016-1053. doi: 10.1002/pssb.200541348
[28] L.E. Young-S, D. Vudragović, P. Muruganandam, S.K. Adhikari, and A. Balaž, OpenMP Fortran and C programs for solving the time-dependent gross-Pitaevskii equation in an anisotropic trap, Comput. Phys. Commun. 204 (2016), pp. 209-213. doi: 10.1016/j.cpc.2016.03.015 · Zbl 1380.65480
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.