×

Iterations of Boolean algebras with measure. (English) Zbl 0687.03032

The author considers a class M of Boolean algebras with strictly positive, finitely additive measures. He shows that M is closed under iteration with finite support and that forcing via such algebras allows an extension of the Lebesgue measure structure of the ground model. For a class \(\Gamma\) of Boolean algebras let MA(\(\Gamma)\) denote Martin’s axiom restricted to \(\Gamma\). B is said to be \(\sigma\)-centered if the Stone space of B is separable. The main result of this paper is: MA(M)\(\equiv MA(\sigma\)-centered) and LC, where LC is the statement that for an infinite cardinal \(\kappa\), \(Cov(L_{\kappa})=2^{\omega}\), with a suitable definition of \(Cov(L_{\kappa})\).
Reviewer: Mo Shaokui

MSC:

03E40 Other aspects of forcing and Boolean-valued models
03E50 Continuum hypothesis and Martin’s axiom
28A60 Measures on Boolean rings, measure algebras
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bartoszyński, T.: Additivity of measure implies additivity of category. Trans. Am. Math. Soc.281, 209–213 (1984) · Zbl 0538.03042
[2] Baumgartner, J.: Iterated forcing. In: Mathias, A.R.D. (ed.) Surveys in set theory. (Lond. Math. Soc. Lect. Note Ser. no. 87, pp. 1–59) Cambridge: Cambridge University Press 1983
[3] Bell, M.: On the combinatorial principleP(c). Fundam. Math.114, 149–157 (1981) · Zbl 0581.03038
[4] Gaifman, H.: Concerning measures on Boolean algebras. Pac. J. Math.14, 61–73 (1964) · Zbl 0127.02306
[5] Horn, A., Tarski, A.: Measures in Boolean algebras. Trans. Am. Math. Soc.64, 467–497 (1948) · Zbl 0035.03001 · doi:10.1090/S0002-9947-1948-0028922-8
[6] Jech, T.J.: Set theory. New York: Academic Press 1978 · Zbl 0419.03028
[7] Jech, T.J.: Abstract theory of abelian operator algebras: an application of forcing. Trans. Am. Math. Soc.289, 133–162 (1985) · Zbl 0597.03030 · doi:10.1090/S0002-9947-1985-0779056-9
[8] Kelley, J.: Measures on Boolean algebras. Pac. J. Math.9, 1165–1177 (1959) · Zbl 0087.04801
[9] Kunen, K.: Set theory. Amsterdam: North-Holland 1980 · Zbl 0443.03021
[10] Maharam, D.: On homogeneous measure algebras. Proc. Nat. Acad. Sci. USA28, 108–111 (1942) · Zbl 0063.03723 · doi:10.1073/pnas.28.3.108
[11] Martin, D.A., Solovay, R.M.: Internal Cohen extensions. Ann. Math. Logic2, 143–178 (1970) · Zbl 0222.02075 · doi:10.1016/0003-4843(70)90009-4
[12] Miller, A.W.: Some properties of measure and category. Trans. Am. Math. Soc.266, 93–114 (1981) · Zbl 0472.03040 · doi:10.1090/S0002-9947-1981-0613787-2
[13] Miller, A.W.: Additivity of measure implies dominating reals. Proc. Am. Math. Soc.91, 111–117 (1984) · Zbl 0586.03042 · doi:10.1090/S0002-9939-1984-0735576-9
[14] Raisonnier, J., Stern, J.: The strength of measurability hypotheses. Isr. J. Math.50, 337–349 (1985) · Zbl 0602.03012 · doi:10.1007/BF02759764
[15] Sikorski, R.: Boolean algebras. Berlin Heidelberg New York: Springer 1964 · Zbl 0123.01303
[16] Solovay, R.M., Tennenbaum, S.: Iterated Cohen extensions and Souslin’s problem. Ann. Math.94, 201–245 (1971) · Zbl 0244.02023 · doi:10.2307/1970860
[17] Truss, J.: Sets having calibre 1. In: Gandy, R.O., Hyland, J.M.E. (eds.) Logic Colloquium ’76. (Stud. Logic Found. Math., vol. 87, pp. 595–612) Amsterdam: North-Holland 1977 · Zbl 0432.03028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.