Alexander, H. Linear measure on plane continua of finite linear measure. (English) Zbl 0687.30009 Ark. Mat. 27, No. 2, 169-177 (1989). Let B be a plane continuum of finite linear Hausdorff measure \(\Lambda\) (B). Then B has at most countably many complementary domains \(V_ j\). These are simply connected. Let \(f_ j\) map the unit disk conformally onto \(V_ j\). The author shows that \[ 2\Lambda (b)=\sum_{j}\int^{2\pi}_{0}| f'(e^{i\theta})| d\theta. \] More generally, if g is a bounded Borel function defined on B then \[ 2\int_{B}g d\Lambda =\sum_{j}\int^{2\pi}_{0}g(f_ j(e^{i\theta}))| f'(e^{\quad i\theta})| d\theta. \] Reviewer: Ch.Pommerenke Cited in 1 Document MSC: 30C35 General theory of conformal mappings 28A75 Length, area, volume, other geometric measure theory Keywords:Hausdorff measure PDF BibTeX XML Cite \textit{H. Alexander}, Ark. Mat. 27, No. 2, 169--177 (1989; Zbl 0687.30009) Full Text: DOI References: [1] Alexander, H., Remark on a lemma of Pommerenke,Bull. London Math. Soc. 20 (1988), 327–328. · Zbl 0664.30032 · doi:10.1112/blms/20.4.327 [2] Besicovitch, A. S., On the fundamental geometric properties of linearly measurable plane sets(II), Math. Ann. 116 (1938), 296–329. · Zbl 0018.11302 · doi:10.1007/BF01448943 [3] Besicovitch, A. S., On the fundamental geometric properties of linearly measurable plane sets(III), Math. Ann. 116 (1939), 349–357. · Zbl 0020.01003 · doi:10.1007/BF01597361 [4] Moore, R. L., Concerning triods in the plane and the junction points of plane continua,Proc. Nat. Acad. Sci. U.S.A.14 (1928), 85–88. · JFM 54.0630.03 · doi:10.1073/pnas.14.1.85 [5] Pommerenke, Chr.,Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975. [6] Rado, T. andReichelderfer, P. V.,Continuous transformations in analysis, Grundlehren d. Math. Wiss.75, Springer-Verlag, Berlin, 1955. [7] Rudin, W., personal communication. [8] Falconer, K. J.,The geometry of fractal sets, Cambridge Univ. Press, 1985. · Zbl 0587.28004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.