zbMATH — the first resource for mathematics

A mass-lumping semidiscretization of the semiconductor device equations. I: Properties of the semidiscrete problem. (English) Zbl 0687.65113
The system of partial differential equations \(-q\Delta u_ 0=u_ 2-u_ 1+Q,\quad (u_ 1)_ t=\nabla \cdot J_ 1-S(u_ 1,u_ 2),\quad (u_ 2)_ t=-\nabla \cdot J_ 2-S(u_ 1,u_ 2),\quad J_ 1=\nabla u_ 1- u_ 1\nabla u_ 0,\quad J_ 2=-p(\nabla u_ 2+u_ 2\nabla u_ 0)\) is investigated in a cylinder with a method which can be regarded as a combination of finite difference and finite element ideas.
Reviewer: L.A.Sakhnovich

65Z05 Applications to the sciences
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
78A55 Technical applications of optics and electromagnetic theory
35Q99 Partial differential equations of mathematical physics and other areas of application
Full Text: DOI
[1] Adams R.A., New York-San Francisco-London (1975)
[2] Gajewski H., On the basic equations for carrier transport in semiconductors. Preprint P-MATH-39/84. AdW der DDR (1984) · Zbl 0562.35022
[3] Brezzi F., Instituto di Analisi Numerica (1985)
[4] Ciarlet P., The Finite Element Method for Elliptic Problems (1978) · Zbl 0383.65058
[5] Cottrell P.E., Proc. NASECODE I Conf., 31-64 (1979)
[6] Engl W.L., Proc. NASECODE I Conf., 65-93 (1979)
[7] Grisvard P., Elliptic Problems in Nonsmooth Domains (1985) · Zbl 0695.35060
[8] DOI: 10.1002/mana.19871320119 · Zbl 0639.35008 · doi:10.1002/mana.19871320119
[9] DOI: 10.1109/T-ED.1964.15364 · doi:10.1109/T-ED.1964.15364
[10] DOI: 10.1007/978-3-0348-7196-9 · doi:10.1007/978-3-0348-7196-9
[11] Henry D., Lecture Notes in Mathematics 841, in: Geometric theory of semilinear parabolic equations (1981) · Zbl 0456.35001 · doi:10.1007/BFb0089647
[12] Ikeda T., Maximum Principle in Finite Element Models for Convection-diffusion Phenomena (1983) · Zbl 0508.65049
[13] Mazja V.G., Zeitschrift für Analysis und ihre Anwendungen 2 (1983) 335-359 pp 523–
[14] P.A. Markowich, C.A. Ringhofer, E. Langer and S. Selberherr, An asymptotic analysis of single-junction semiconductor devices. MRC Technical Summary Report 2527, Mathematics Research Center, Universityof Wisconsin, Madison,1983.
[15] DOI: 10.1108/eb009978 · Zbl 0619.65115 · doi:10.1108/eb009978
[16] McCartin B.J., Lecture notes of a short course held in association with the NASECODE IV conf. (ed.: J.J.H. Miller) pp 72– (1985)
[17] Miller J.J.H., Numerical Analysis of Semiconductor Devices and Integrated Circuits (1983)
[18] DOI: 10.1090/S0025-5718-1982-0645661-4 · doi:10.1090/S0025-5718-1982-0645661-4
[19] Roos H.-G., Dresden (1986)
[20] DOI: 10.1109/T-ED.1969.16566 · doi:10.1109/T-ED.1969.16566
[21] DOI: 10.1109/T-ED.1973.17727 · doi:10.1109/T-ED.1973.17727
[22] Thomeé V., Lecture Notes in Mathematics 1054, in: Galerkin finite element methods for parabolic problems (1984)
[23] Vasil’eva A.B., J. on Comput. Mathematics and Mathem. Physics 17 pp 339– (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.