×

zbMATH — the first resource for mathematics

Numerical analysis of junctions between plates. (English) Zbl 0687.73068
Summary: The junctions of bars, plates and shells are the basic ingredients of any industrial structural construction. The numerical simulation of such junctions is a classical part of the commercial finite element codes. On the other hand there seem to be very few mathematical studies of such junctions. In this paper, we propose a variational formulation of plate junctions when these junctions can be considered as elastic or rigid hinges. Then, we study the mathematical properties of these equations as their approximation by finite element methods. We conclude by reporting some numerical experiments.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
91A99 Game theory
74K20 Plates
Software:
Modulef
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baker, E.H.; Kovalevsky, L.; Rish, F.L., Structural analysis of shells, (1981), Krieger Huntington, NY · Zbl 0519.73060
[2] Bathe, K.J.; Ho, L.W., Some results in the analysis of thin shell structures, (), 122-150
[3] Bathe, K.J., Finite element procedures in engineering analysis, (1982), Prentice-Hall Englewood Cliffs, NJ · Zbl 0528.65053
[4] Ciarlet, P.G., Modelling and numerical analysis of junctions between elastic structures, (), 62-74
[5] Ciarlet, P.G.; Le Dret, H.; Nzengwa, R., Modélisation de la jonction entre un corps élastique tridimensionnel et une plaque, C.R. acad. sci. Paris, 305, I, 55-58, (1987) · Zbl 0632.73015
[6] Aufranc, M., Etudes numériques de raccords de structures élastiques de dimensions différentes, Rapports de recherche INRIA, 781, (1988), Février
[7] Le Dret, H., Modelling of a folded plate, publications du laboratoire d’analyse numérique de l’université pierre et marie Curie R87017, Asymptotic analysis, (1987), to appear.
[8] Le Dret, H., Folded plates revisited, publications du laboratoire d’analyse numérique de l’université pierre et marie Curie R87032, Asymptotic analysis, (1987), to appear.
[9] Germain, P., Cours de Mécanique, (1979), Ecole Polytechnique · Zbl 0254.73001
[10] Fayolle, S., Sur l’analyse numérique de raccords de poutres et de plaques, ()
[11] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Amsterdam · Zbl 0445.73043
[12] Bernadou, M., Convergence of conforming finite element methods for general shell problems, Internat. J. engrg. sci., 18, 249-276, (1980) · Zbl 0429.73084
[13] Bernadou, M., Méthodes numériques, (), 703-910
[14] Bernadou, M.; George, P.L.; Hassim, A.; Joly, P.; Laug, P.; Perronnet, A.; Saltel, E.; Steer, D.; Vanderborck, G.; Vidrascu, M., Modulef, A modular finite element library, (1986), INRIA Rocquencourt · Zbl 0594.65080
[15] ADINA(Automatic Dynamic Incremental Nonlinear Analysis), ()
[16] Scordelis, A.C.; Croy, E.L.; Stubbs, I.R., Experimental and analytical study of a folded plate, ASCE J. struct. div., 87, 139-160, (1961), ST8
[17] Meek, J.L.; Tan, H.S., A faceted shell element with loof nodes, Internat. J. numer. methods engrg., 23, 49-67, (1986) · Zbl 0585.73124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.