×

Hierarchical orthogonal matrix generation and matrix-vector multiplications in rigid body simulations. (English) Zbl 1386.15057

MSC:

15B10 Orthogonal matrices
65F25 Orthogonalization in numerical linear algebra
65F50 Computational methods for sparse matrices
65Y20 Complexity and performance of numerical algorithms
70E55 Dynamics of multibody systems

Software:

PAFMPB; RECFMM; DASHMM
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] F. Balboa Usabiaga, B. Kallemov, B. Delmotte, A. Bhalla, B. Griffith, and A. Donev, Hydrodynamics of suspensions of passive and active rigid particles: A rigid multiblob approach, Commun. Appl. Math. Comput. Sci., 11 (2017), pp. 217–296.
[2] Y. Bao, M. Rachh, E. Keaveny, L. Greengard, and A. Donev, A Fluctuating Boundary Integral Method for Brownian Suspensions, preprint, arXiv:1709.01480, 2017.
[3] G. Batchelor, Brownian diffusion of particles with hydrodynamic interaction, J. Fluid Mech., 74 (1976), pp. 1–29. · Zbl 0346.76073
[4] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31 (1977), pp. 333–390. · Zbl 0373.65054
[5] B. Carrasco and J. G. de la Torre, Hydrodynamic properties of rigid particles: Comparison of different modeling and computational procedures, Biophys. J., 76 (1999), pp. 3044–3057.
[6] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex fourier series, Math. Comp., 19 (1965), pp. 297–301. · Zbl 0127.09002
[7] J. DeBuhr, B. Zhang, A. Tsueda, V. Tilstra-Smith, and T. Sterling, DASHMM: Dynamic Adaptive System for Hierarchical Multipole Methods, Commun. Comput. Phys., 20 (2016), pp. 1106–1126. · Zbl 1373.70002
[8] M. Długosz and J. M. Antosiewicz, Toward an accurate modeling of hydrodynamic effects on the translational and rotational dynamics of biomolecules in many-body systems, J. Phys. Chem. B, 119 (2015), pp. 8425–8439.
[9] D. L. Ermak and J. McCammon, Brownian dynamics with hydrodynamic interactions, J. Chem. Phys., 69 (1978), pp. 1352–1360.
[10] F. Fang, Recursive Tree Algorithms for Orthogonal Matrix Generation and Matrix-Vector Multiplications in Rigid Body Simulations, Undergraduate honors thesis, University of North Carolina at Chapel Hill, 2016.
[11] L. Greengard, D. Gueyffier, P. G. Martinsson, and V. Rokhlin, Fast direct solvers for integral equations in complex three-dimensional domains, Acta Numer., 18 (2009), pp. 243–275. · Zbl 1176.65141
[12] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys., 73 (1987), pp. 325–348. · Zbl 0629.65005
[13] L. Greengard and V. Rokhlin, A new version of the fast multipole method for the Laplace equation in three dimensions, Acta. Numer., 6 (1997), pp. 229–269. · Zbl 0889.65115
[14] W. Hackbusch, A sparse matrix arithmetic based on \(\cal{H}\)-matrices. part I: Introduction to \(\cal{H}\)-matrices, Computing, 62 (1999), pp. 89–108.
[15] W. Hackbusch, Multi-Grid Methods and Applications, Vol. 4, Springer Science & Business Media, New York, 2013. · Zbl 0595.65106
[16] W. Hackbusch and B. N. Khoromskij, A sparse \(\cal{H}\)-matrix arithmetic, Computing, 64 (2000), pp. 21–47. · Zbl 0962.65029
[17] K. L. Ho and L. Greengard, A fast direct solver for structured linear systems by recursive skeletonization, SIAM J. Sci. Comput., 34 (2012), pp. A2507–A2532. · Zbl 1259.65062
[18] S. Jiang, Z. Liang, and J. Huang, A fast algorithm for Brownian dynamics simulation with hydrodynamic interactions, Math. Comp., 82 (2013), pp. 1631–1645. · Zbl 1336.76029
[19] Z. Liang, Z. Gimbutas, L. Greengard, J. Huang, and S. Jiang, A fast multipole method for the Rotne–Prager–Yamakawa tensor and its applications, J. Comput. Phys., 234 (2013), pp. 133–139. · Zbl 1284.76318
[20] B. Sprinkle, F. B. Usabiaga, N. A. Patankar, and A. Donev, Large Scale Brownian Dynamics of Confined Suspensions of Rigid Particles, preprint, arXiv:1709.02410, 2017.
[21] N. Wang, G. A. Huber, and J. A. McCammon, Assessing the two-body diffusion tensor calculated by the bead models, J. Chem. Phys., 138 (2013), p. 204117.
[22] L. Ying, G. Biros, and D. Zorin, A kernel-independent adaptive fast multipole algorithm in two and three dimensions, J. Comput. Phys., 196 (2004), pp. 591–626. · Zbl 1053.65095
[23] B. Zhang, J. Huang, N. P. Pitsianis, and X. Sun, recFMM: Recursive parallelization of the adaptive fast multipole method for coulomb and screened coulomb interactions, Commun. Comput. Phys., 20 (2016), pp. 534–550. · Zbl 1373.78001
[24] B. Zhang, B. Peng, J. Huang, N. P. Pitsianis, X. Sun, and B. Lu, Parallel AFMPB solver with automatic surface meshing for calculation of molecular solvation free energy, Comput. Phys. Commun., 190 (2015), pp. 173–181. · Zbl 1344.78004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.