×

Inference from randomized (factorial) experiments. (English) Zbl 1442.62010

Summary: This is a contribution to the discussion of the interesting paper by P. Ding [Stat. Sci. 32, No. 3, 331–345 (2017; Zbl 1442.62014)], which contrasts approaches attributed to Neyman and Fisher. I believe that Fisher’s usual assumption was unit-treatment additivity, rather than the “sharp null hypothesis” attributed to him. Fisher also developed the notion of interaction in factorial experiments. His explanation leads directly to the concept of marginality, which is essential for the interpretation of data from any factorial experiment.

MSC:

62A01 Foundations and philosophical topics in statistics
62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference
62F03 Parametric hypothesis testing
62E20 Asymptotic distribution theory in statistics
62K15 Factorial statistical designs

Citations:

Zbl 1442.62014
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Bailey, R. A. (1981). A unified approach to design of experiments. J. Roy. Statist. Soc. Ser. A 144 214-223. · Zbl 0469.62053 · doi:10.2307/2981920
[2] Bailey, R. A. (1991). Strata for randomised experiments. J. Roy. Statist. Soc. Ser. B 53 27-78. With discussion and a reply by the author. · Zbl 0800.62477
[3] Bailey, R. A. (2008). Design of Comparative Experiments. Cambridge Series in Statistical and Probabilistic Mathematics 25. Cambridge Univ. Press, Cambridge. · Zbl 1155.62054
[4] Bailey, R. A. (2015). Structures defined by factors. In Handbook of Design and Analysis of Experiments (A. Dean, M. Morris, J. Stufken and D. Bingham, eds.) 371-414. Chapman & Hall/CRC Press, Boca Raton. · Zbl 1359.62325
[5] Bailey, R. A. and Brien, C. J. (2016). Randomization-based models for multitiered experiments: I. A chain of randomizations. Ann. Statist.44 1131-1164. · Zbl 1338.62028
[6] Bennett, J. H. (ed.) (1990). Statistical Inference and Analysis: Selected Correspondence of R. A. Fisher. The Clarendon Press, Oxford. With a preface by J. H. Bennett. · Zbl 0712.01007
[7] Cox, D. R. (1958a). The interpretation of the effects of non-additivity in the Latin square. Biometrika 45 69-73. · Zbl 0087.14902
[8] Cox, D. R. (1958b). Planning of Experiments. Wiley, New York; Chapman & Hall, London. · Zbl 0084.15802
[9] Dasgupta, T., Pillai, N. S. and Rubin, D. B. (2015). Causal inference from \(2^K\) factorial designs by using potential outcomes. J. R. Stat. Soc. Ser. B. Stat. Methodol.77 727-753. · Zbl 1414.62337
[10] Ding, P. (2017). A paradox from randomization-based causal inference. Statist. Sci.32 331-345. · Zbl 1442.62014 · doi:10.1214/16-STS571
[11] Fisher, R. A. (1925). Statistical Methods for Research Workers, 1st ed. Oliver and Boyd, Edinburgh. · JFM 51.0414.08
[12] Fisher, R. A. (1926). The arrangement of field experiments. Journal of the Ministry of Agriculture of Great Britain 33 503-513.
[13] Fisher, R. A. (1935a). The Design of Experiments, 1st ed. Oliver and Boyd, Edinburgh.
[14] Fisher, R. A. (1935b). Contribution to discussion of “Statistical problems in agricultural experimentation” by J. Neyman, with the help of K. Iwaskiewicz and St. Kołodziecyk. J. Roy. Statist. Soc. Suppl.2 154-157.
[15] Fisher, R. A. (1937). The Design of Experiments, 2nd ed. Oliver and Boyd, Edinburgh. · JFM 61.0566.03
[16] Fisher, R. A. (1960). The Design of Experiments, 7th ed. Oliver and Boyd, Edinburgh.
[17] Fisher Box, J. (1978). R. A. Fisher: The Life of a Scientist. Wiley, New York. · Zbl 0666.01016
[18] Hurlbert, S. H. (1984). Pseudoreplication and the design of ecological field experiments. Ecol. Monogr.54 187-211.
[19] Hurlbert, S. H. (2009). The ancient black art and transdisciplinary extent of pseudoreplication. Journal of Comparative Psychology 123 436-443.
[20] Kempthorne, O. (1975a). Fixed and mixed models in the analysis of variance. Biometrics 31 473-486. · Zbl 0306.62020
[21] Kempthorne, O. (1975b). Inference from experiments and randomisation. In A Survey of Statistical Design and Linear Models (Proc. Internat. Sympos., Colorado State Univ., Ft. Collins, Colo., 1973) (J. N. Srivastava, ed.) 303-331. North-Holland, Amsterdam. · Zbl 0302.62001
[22] Nelder, J. A. (1965). The analysis of randomised experiments with orthogonal block structure. II. Treatment structure and the general analysis of variance. Proc. Roy. Soc. Ser. A 283 163-178. · Zbl 0124.10703
[23] Nelder, J. A. (1977). A reformulation of linear models. J. Roy. Statist. Soc. Ser. A 140 48-76. With discussion.
[24] Nelder, J. A. (1994). The statistics of linear models: Back to basics. Stat. Comput.4 221-234.
[25] Nelder, J. A. (1998). The great mixed-model muddle is alive and flourishing, alas! Food Qual. Prefer.9 157-159.
[26] Neyman, J. (1935). Statistical problems in agricultural experimentation. J. Roy. Statist. Soc. Suppl.2 107-154. With the help of K. Iwaskiewicz and St. Kołodziecyk. · JFM 63.1103.02
[27] Pauly, M., Brunner, E. and Konietschke, F. (2015). Asymptotic permutation tests in general factorial designs. J. R. Stat. Soc. Ser. B. Stat. Methodol.77 461-473. · Zbl 1414.62339
[28] Reid, C. (1982). Neyman—From Life. Springer, New York. · Zbl 0517.01034
[29] Senn, S. (2004). Added values. Controversies concerning randomisation and additivity in clinical trials. Stat. Med.23 3729-3753.
[30] Sparks, T. H., Bailey, R. A. and Elston, D. A. (1997). Pseudoreplication: Common (mal)practice. SETAC (Society of Environmental Toxicology and Chemistry) News 17(3) 12-13.
[31] Wilk, M. B. and Kempthorne, O. (1957). Non-additivities in a Latin square design. J. Amer. Statist. Assoc.52 218-236. · Zbl 0084.36103
[32] Yates, F. (1933). The formation of Latin squares for use in field experiments. Empire Journal of Experimental Agriculture 1 235-244.
[33] Yates, F. (1935a). Contribution to discussion of “Statistical problems in agricultural experimentation” by J. Neyman, with the help of K. Iwaskiewicz and St. Kołodziecyk. J. Roy. Statist. Soc. Suppl.2 161-166.
[34] Yates, F. (1935b). Complex experiments. J. Roy. Statist. Soc. Suppl.2 181-223.
[35] Yates, F. (1964). Sir Ronald Fisher and the design of experiments. Biometrics 20 307-321.
[36] Yates, F.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.