×

Importance sampling: intrinsic dimension and computational cost. (English) Zbl 1442.62026

Summary: The basic idea of importance sampling is to use independent samples from a proposal measure in order to approximate expectations with respect to a target measure. It is key to understand how many samples are required in order to guarantee accurate approximations. Intuitively, some notion of distance between the target and the proposal should determine the computational cost of the method. A major challenge is to quantify this distance in terms of parameters or statistics that are pertinent for the practitioner. The subject has attracted substantial interest from within a variety of communities. The objective of this paper is to overview and unify the resulting literature by creating an overarching framework. A general theory is presented, with a focus on the use of importance sampling in Bayesian inverse problems and filtering.

MSC:

62D05 Sampling theory, sample surveys
62-08 Computational methods for problems pertaining to statistics

Software:

PRMLT
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Achutegui, K., Crisan, D., Miguez, J. and Rios, G. (2014). A simple scheme for the parallelization of particle filters and its application to the tracking of complex stochastic systems. Preprint. Available at arXiv:1407.8071.
[2] Agapiou, S., Larsson, S. and Stuart, A. M. (2013). Posterior contraction rates for the Bayesian approach to linear ill-posed inverse problems. Stochastic Process. Appl.123 3828-3860. · Zbl 1284.62289
[3] Agapiou, S. and Mathé, P. (2014). Preconditioning the prior to overcome saturation in Bayesian inverse problems. Preprint. Available at arXiv:1409.6496.
[4] Agapiou, S., Papaspiliopoulos, O., Sanz-Alonso, D. and Stuart, A. M. (2017). Supplement to “Importance sampling: Intrinsic dimension and computational cost.” DOI:10.1214/17-STS611SUPP. · Zbl 1442.62026
[5] Agapiou, S., Stuart, A. M. and Zhang, Y.-X. (2014). Bayesian posterior contraction rates for linear severely ill-posed inverse problems. J. Inverse Ill-Posed Probl.22 297-321. · Zbl 1288.62036
[6] Bain, A. and Crisan, D. (2009). Fundamentals of Stochastic Filtering 3. Springer, Berlin. · Zbl 1176.62091
[7] Bender, C. M. and Orszag, S. A. (1999). Advanced Mathematical Methods for Scientists and Engineers. I. Asymptotic Methods and Perturbation Theory. Springer, New York. · Zbl 0938.34001
[8] Bengtsson, T., Bickel, P., Li, B. et al. (2008). Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems. In Probability and Statistics: Essays in Honor of David A. Freedman. Inst. Math. Stat. (IMS) Collect. 316-334. IMS, Beachwood, OH. · Zbl 1166.93376
[9] Beskos, A., Crisan, D. and Jasra, A. (2014). On the stability of sequential Monte Carlo methods in high dimensions. Ann. Appl. Probab.24 1396-1445. · Zbl 1304.82070
[10] Beskos, A., Crisan, D., Jasra, A., Kamatani, K. and Zhou, Y. (2014). A stable particle filter in high-dimensions. Preprint. Available at 1412.3501.
[11] Bickel, P., Li, B. and Bengtsson, T. (2008). Sharp failure rates for the bootstrap particle filter in high dimensions. In Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh. Inst. Math. Stat. (IMS) Collect.3 318-329. IMS, Beachwood, OH.
[12] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer, New York. · Zbl 1107.68072
[13] Boucheron, S., Lugosi, G. and Massart, P. (2013). Concentration Inequalities. Oxford Univ. Press, Oxford. · Zbl 1279.60005
[14] Bui-Thanh, T. and Ghattas, O. (2012). Analysis of the Hessian for inverse scattering problems: I. Inverse shape scattering of acoustic waves. Inverse Problems 28 055001, 32. · Zbl 1239.78006
[15] Bui-Thanh, T., Ghattas, O., Martin, J. and Stadler, G. (2013). A computational framework for infinite-dimensional Bayesian inverse problems part I: The linearized case, with application to global seismic inversion. SIAM J. Sci. Comput.35 A2494-A2523. · Zbl 1287.35087
[16] Caflisch, R. E., Morokoff, W. J. and Owen, A. B. (1997). Valuation of Mortgage Backed Securities Using Brownian Bridges to Reduce Effective Dimension. Dept. Mathematics, Univ. California, Los Angeles.
[17] Caponnetto, A. and De Vito, E. (2007). Optimal rates for the regularized least-squares algorithm. Found. Comput. Math.7 331-368. · Zbl 1129.68058
[18] Cavalier, L. and Tsybakov, A. (2002). Sharp adaptation for inverse problems with random noise. Probab. Theory Related Fields 123 323-354. · Zbl 1039.62031
[19] Chatterjee, S. and Diaconis, P. (2015). The sample size required in importance sampling. Preprint. Available at arXiv:1511.01437. · Zbl 1391.65008
[20] Chen, Y. (2005). Another look at rejection sampling through importance sampling. Statist. Probab. Lett.72 277-283. · Zbl 1084.62005
[21] Chopin, N. (2004). Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Statist.32 2385-2411. · Zbl 1079.65006
[22] Chopin, N. and Papaspiliopoulos, O. (2016). A Concise Introduction to Sequential Monte Carlo.
[23] Chorin, A. J. and Morzfeld, M. (2013). Conditions for successful data assimilation. Journal of Geophysical Research: Atmospheres 118 11-522.
[24] Constantine, P. G. (2015). Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies 2. SIAM Spotlights, Philadelphia, PA. · Zbl 1431.65001
[25] Cotter, S. L., Roberts, G. O., Stuart, A. M. and White, D. (2013). MCMC methods for functions: Modifying old algorithms to make them faster. Statist. Sci.28 424-446. · Zbl 1331.62132
[26] Crisan, D., Del Moral, P. and Lyons, T. (1999). Discrete filtering using branching and interacting particle systems. Markov Process. Related Fields 5 293-318. · Zbl 0967.93088
[27] Crisan, D. and Doucet, A. (2002). A survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Signal Process.50 736-746. · Zbl 1369.60015
[28] Crisan, D. and Rozovskiĭ, B., eds. (2011). The Oxford Handbook of Nonlinear Filtering. Oxford Univ. Press, Oxford.
[29] Cui, T., Martin, J., Marzouk, Y. M., Solonen, A. and Spantini, A. (2014). Likelihood-informed dimension reduction for nonlinear inverse problems. Inverse Problems 30 114015, 28. · Zbl 1310.62030
[30] Dashti, M. and Stuart, A. M. (2016). The Bayesian approach to inverse problems. In Handbook of Uncertainty Quantification (R. Ghanem, D. Higdon and H. Owhadi, eds.). http://arxiv.org/abs/1302.6989.
[31] Del Moral, P. (2004). Feynman-Kac Formulae. Springer, New York. · Zbl 1130.60003
[32] Del Moral, P. and Miclo, L. (2000). Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non-linear filtering. In Séminaire de Probabilités, XXXIV. Lecture Notes in Math.1729 1-145. Springer, Berlin. · Zbl 0963.60040
[33] Doucet, A., de Freitas, N. and Gordon, N. (2001). An introduction to sequential Monte Carlo methods. In Sequential Monte Carlo Methods in Practice. 3-14. Springer, New York. · Zbl 1056.93576
[34] Doucet, A., Godsill, S. and Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput.10 197-208.
[35] Doukhan, P. and Lang, G. (2009). Evaluation for moments of a ratio with application to regression estimation. Bernoulli 15 1259-1286. · Zbl 1200.62035
[36] Downey, P. J. and Wright, P. E. (2007). The ratio of the extreme to the sum in a random sequence. Extremes 10 249-266. · Zbl 1164.60021
[37] Dupuis, P., Spiliopoulos, K. and Wang, H. (2012). Importance sampling for multiscale diffusions. Multiscale Model. Simul.10 1-27. · Zbl 1250.60031
[38] Engl, H. W., Hanke, M. and Neubauer, A. (1996). Regularization of Inverse Problems. Mathematics and Its Applications 375. Kluwer Academic, Dordrecht. · Zbl 0859.65054
[39] Franklin, J. N. (1970). Well-posed stochastic extensions of ill-posed linear problems. J. Math. Anal. Appl.31 682-716. · Zbl 0198.20601
[40] Frei, M. and Künsch, H. R. (2013). Bridging the ensemble Kalman and particle filters. Biometrika 100 781-800. · Zbl 1279.62199
[41] Furrer, R. and Bengtsson, T. (2007). Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivariate Anal.98 227-255. · Zbl 1105.62091
[42] Gelman, A., Roberts, G. O. and Gilks, W. R. (1996). Efficient Metropolis jumping rules. In Bayesian Statistics, 5 (Alicante, 1994). 599-607. Oxford Univ. Press, New York.
[43] Gibbs, A. L. and Su, F. E. (2002). On choosing and bounding probability metrics. Int. Stat. Rev.70 419-435. · Zbl 1217.62014
[44] Goodman, J., Lin, K. K. and Morzfeld, M. (2015). Small-noise analysis and symmetrization of implicit Monte Carlo samplers. Comm. Pure Appl. Math. · Zbl 1352.65031
[45] Han, W. (2013). On the Numerical Solution of the Filtering Problem Ph.D. thesis, Dept. Mathematics, Imperial College, London.
[46] Johansen, A. M. and Doucet, A. (2008). A note on auxiliary particle filters. Statist. Probab. Lett.78 1498-1504. · Zbl 1152.62066
[47] Kahn, H. (1955). Use of Different Monte Carlo Sampling Techniques. Rand Corporation, Santa Monica, CA.
[48] Kahn, H. and Marshall, A. W. (1953). Methods of reducing sample size in Monte Carlo computations. Journal of the Operations Research Society of America 1 263-278.
[49] Kaipio, J. and Somersalo, E. (2005). Statistical and Computational Inverse Problems. Applied Mathematical Sciences 160. Springer, New York. · Zbl 1068.65022
[50] Kallenberg, O. (2002). Foundations of Modern Probability. Probability and Its Applications, 2nd ed. Springer, Berlin. · Zbl 0996.60001
[51] Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. J. Fluids Eng.82 35-45.
[52] Kalnay, E. (2003). Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge Univ. Press, Cambridge.
[53] Kekkonen, H., Lassas, M. and Siltanen, S. (2016). Posterior consistency and convergence rates for Bayesian inversion with hypoelliptic operators. Inverse Probl.32 085005, 31. · Zbl 1390.35422
[54] Knapik, B. T., van Der Vaart, A. W. and van Zanten, J. H. (2011). Bayesian inverse problems with Gaussian priors. Ann. Statist.39 2626-2657. · Zbl 1232.62079
[55] Knapik, B. T., van der Vaart, A. W. and van Zanten, J. H. (2013). Bayesian recovery of the initial condition for the heat equation. Comm. Statist. Theory Methods 42 1294-1313. · Zbl 1347.62057
[56] Kong, A. (1992). A note on importance sampling using standardized weights. Technical Report 348, Dept. Statistics, Univ. Chicago, Chicago, IL.
[57] Kong, A., Liu, J. S. and Wong, W. H. (1994). Sequential imputations and Bayesian missing data problems. J. Amer. Statist. Assoc.89 278-288. · Zbl 0800.62166
[58] Kuo, F. Y. and Sloan, I. H. (2005). Lifting the curse of dimensionality. Notices Amer. Math. Soc.52 1320-1329. · Zbl 1080.65020
[59] Lancaster, P. and Rodman, L. (1995). Algebraic Riccati Equations. Oxford Univ. Press, London. · Zbl 0836.15005
[60] Lasanen, S. (2007). Measurements and infinite-dimensional statistical inverse theory. PAMM 7 1080101-1080102.
[61] Lasanen, S. (2012). Non-Gaussian statistical inverse problems. Part I: Posterior distributions. Inverse Probl. Imaging 6 215-266. · Zbl 1263.62041
[62] Lasanen, S. (2012). Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Probl. Imaging 6 267-287. · Zbl 1263.62042
[63] Lax, P. D. (2002). Functional Analysis. Wiley, New York. · Zbl 1009.47001
[64] Lehtinen, M. S., Paivarinta, L. and Somersalo, E. (1989). Linear inverse problems for generalised random variables. Inverse Probl.5 599. · Zbl 0681.60015
[65] Le Gland, F., Monbet, V. and Tran, V. (2009). Large sample asymptotics for the ensemble Kalman filter Ph.D. thesis, INRIA. · Zbl 1225.93108
[66] Li, W., Tan, Z. and Chen, R. (2013). Two-stage importance sampling with mixture proposals. J. Amer. Statist. Assoc.108 1350-1365. · Zbl 06276808
[67] Liang, F., Liu, C. and Carroll, R. J. (2007). Stochastic approximation in Monte Carlo computation. J. Amer. Statist. Assoc.102 305-320. · Zbl 1226.65002
[68] Lin, K., Lu, S. and Mathé, P. (2015). Oracle-type posterior contraction rates in Bayesian inverse problems. Inverse Probl. Imaging 9. · Zbl 1332.62098
[69] Lindley, D. V. and Smith, A. F. M. (1972). Bayes estimates for the linear model. J. R. Stat. Soc. Ser. B. Stat. Methodol.34 1-41. · Zbl 0246.62050
[70] Liu, J. S. (1996). Metropolized independent sampling with comparisons to rejection sampling and importance sampling. Stat. Comput.6 113-119.
[71] Liu, J. S. (2008). Monte Carlo Strategies in Scientific Computing. Springer, New York. · Zbl 1132.65003
[72] Liu, J. S. and Chen, R. (1998). Sequential Monte Carlo methods for dynamic systems. J. Amer. Statist. Assoc.93 1032-1044. · Zbl 1064.65500
[73] Lu, S. and Mathé, P. (2014). Discrepancy based model selection in statistical inverse problems. J. Complexity 30 290-308. · Zbl 1284.47052
[74] Mandelbaum, A. (1984). Linear estimators and measurable linear transformations on a Hilbert space. Z. Wahrsch. Verw. Gebiete 65 385-397. · Zbl 0506.60004
[75] Martin, J., Wilcox, L. C., Burstedde, C. and Ghattas, O. (2012). A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion. SIAM J. Sci. Comput.34 A1460-A1487. · Zbl 1250.65011
[76] McLeish, D. L. and O’Brien, G. L. (1982). The expected ratio of the sum of squares to the square of the sum. Ann. Probab.10 1019-1028. · Zbl 0545.60034
[77] Míguez, J., Crisan, D. and Djurić, P. M. (2013). On the convergence of two sequential Monte Carlo methods for maximum a posteriori sequence estimation and stochastic global optimization. Stat. Comput.23 91-107.
[78] Morzfeld, M., Tu, X., Wilkening, J. and Chorin, A. J. (2015). Parameter estimation by implicit sampling. Commun. Appl. Math. Comput. Sci.10 205-225. · Zbl 1328.86002
[79] Moskowitz, B. and Caflisch, R. E. (1996). Smoothness and dimension reduction in quasi-Monte Carlo methods. Math. Comput. Modelling 23 37-54. · Zbl 0858.65023
[80] Mueller, J. L. and Siltanen, S. (2012). Linear and Nonlinear Inverse Problems with Practical Applications. Computational Science & Engineering 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. · Zbl 1262.65124
[81] Oliver, D. S., Reynolds, A. C. and Liu, N. (2008). Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge Univ. Press, Cambridge.
[82] Owen, A. and Zhou, Y. (2000). Safe and effective importance sampling. J. Amer. Statist. Assoc.95 135-143. · Zbl 0998.65003
[83] Pitt, M. K. and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. J. Amer. Statist. Assoc.94 590-599. · Zbl 1072.62639
[84] Ray, K. (2013). Bayesian inverse problems with non-conjugate priors. Electron. J. Stat.7 2516-2549. · Zbl 1294.62107
[85] Rebeschini, P. and van Handel, R. (2015). Can local particle filters beat the curse of dimensionality? Ann. Appl. Probab.25 2809-2866. · Zbl 1325.60058
[86] Ren, Y.-F. and Liang, H.-Y. (2001). On the best constant in Marcinkiewicz-Zygmund inequality. Statist. Probab. Lett.53 227-233. · Zbl 0991.60011
[87] Sanz-Alonso, D. (2016). Importance sampling and necessary sample size: An information theory approach. Preprint. Available at arXiv:1608.08814. · Zbl 1396.65016
[88] Slivinski, L. and Snyder, C. Practical estimates of the ensemble size necessary for particle filters.
[89] Snyder, C. (2011). Particle filters, the “optimal” proposal and high-dimensional systems. In Proceedings of the ECMWF Seminar on Data Assimilation for Atmosphere and Ocean.
[90] Snyder, C., Bengtsson, T., Bickel, P. and Anderson, J. (2008). Obstacles to high-dimensional particle filtering. Mon. Weather Rev.136 4629-4640.
[91] Snyder, C., Bengtsson, T. and Morzfeld, M. (2015). Performance bounds for particle filters using the optimal proposal. Mon. Weather Rev.143 4750-4761.
[92] Spantini, A., Solonen, A., Cui, T., Martin, J., Tenorio, L. and Marzouk, Y. (2015). Optimal low-rank approximations of Bayesian linear inverse problems. SIAM J. Sci. Comput.37 A2451-A2487. · Zbl 1325.62060
[93] Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B. Stat. Methodol.64 583-639. · Zbl 1067.62010
[94] Spiliopoulos, K. (2013). Large deviations and importance sampling for systems of slow-fast motion. Appl. Math. Optim.67 123-161. · Zbl 1259.93136
[95] Stuart, A. M. (2010). Inverse problems: A Bayesian perspective. Acta Numer.19 451-559. · Zbl 1242.65142
[96] Tan, Z. (2004). On a likelihood approach for Monte Carlo integration. J. Amer. Statist. Assoc.99 1027-1036. · Zbl 1084.65007
[97] Tierney, L. (1998). A note on Metropolis-Hastings kernels for general state spaces. Ann. Appl. Probab.8 1-9. · Zbl 0935.60053
[98] van Leeuwen, P. J. (2010). Nonlinear data assimilation in geosciences: An extremely efficient particle filter. Q. J. R. Meteorol. Soc.136 1991-1999.
[99] Vanden-Eijnden, E. and Weare, J. (2012). Data assimilation in the low noise, accurate observation regime with application to the Kuroshio current. Mon. Weather Rev.141. · Zbl 1268.65015
[100] Vollmer, S. J. (2013). Posterior consistency for Bayesian inverse problems through stability and regression results. Inverse Probl.29 125011. · Zbl 1284.35064
[101] Whiteley, N., Lee, A. and Heine, K. (2016). On the role of interaction in sequential Monte Carlo algorithms. Bernoulli 22 494-529. · Zbl 1388.65009
[102] Zhang, T. (2002). Effective dimension and generalization of kernel learning. In Advances in Neural Information Processing Systems 454-461.
[103] Zhang, T. (2005). Learning bounds for kernel regression using effective data dimensionality. Neural Comput.17 2077-2098. · Zbl 1080.68044
[104] Zhang, W.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.