×

Almost sure multifractal spectrum of Schramm-Loewner evolution. (English) Zbl 1412.60122

The authors provide the first rigorous derivation of the almost sure bulk multifractal spectrum of chordal Schramm-Loewner evolution. Furthermore, it is obtained the almost sure bulk integral means spectrum of Schramm-Loewner evolution, where the corresponding spectrum confirms the result of D. Beliaev and S. Smirnov [Commun. Math. Phys. 290, No. 2, 577–595 (2009; Zbl 1179.60054)].

MSC:

60J67 Stochastic (Schramm-)Loewner evolution (SLE)
60G17 Sample path properties

Citations:

Zbl 1179.60054
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] T. Alberts, I. Binder, and F. Viklund, A dimension spectrum for SLE boundary collisions, Comm. Math. Phys. 343 (2016), 273-298. · Zbl 1342.82015 · doi:10.1007/s00220-016-2587-x
[2] V. Beffara, The dimension of the SLE curves, Ann. Probab. 36 (2008), 1421-1452. · Zbl 1165.60007 · doi:10.1214/07-AOP364
[3] D. Beliaev and S. Smirnov, “Harmonic measure on fractal sets,” in European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, 41-59. · Zbl 1079.30026
[4] D. Beliaev and S. Smirnov, Harmonic measure and SLE, Comm. Math. Phys. 290 (2009), 577-595. · Zbl 1179.60054 · doi:10.1007/s00220-009-0864-7
[5] I. Binder and B. Duplantier, personal communication, December 2014.
[6] J. Dubédat, Duality of Schramm-Loewner evolutions, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 697-724. · Zbl 1205.60147
[7] J. Dubédat, SLE and the free field: partition functions and couplings, J. Amer. Math. Soc. 22 (2009), 995-1054. · Zbl 1204.60079 · doi:10.1090/S0894-0347-09-00636-5
[8] B. Duplantier, Harmonic measure exponents for two-dimensional percolation, Phys. Rev. Lett. 82, no. 20 (1999), 3940-3943. · Zbl 1042.82560 · doi:10.1103/PhysRevLett.82.3940
[9] B. Duplantier, Two-dimensional copolymers and exact conformal multifractality, Phys. Rev. Lett. 82, no. 5 (1999), 880-883.
[10] B. Duplantier, Conformally invariant fractals and potential theory, Phys. Rev. Lett. 84, no. 7 (2000), 1363-1367. · Zbl 1042.82577 · doi:10.1103/PhysRevLett.84.1363
[11] B. Duplantier, Higher conformal multifractality, J. Statist. Phys. 110 (2003), 691-738. · Zbl 1041.60074 · doi:10.1023/A:1022107818494
[12] B. Duplantier, “Conformal fractal geometry and boundary quantum gravity,” in Fractal Geometry and Applications: A Jubilee of Benôit Mandelbrot, Part 2, Proc. Sympos. Pure Math. 72, Amer. Math. Soc., Providence, 2004, 365-482. · Zbl 1068.60019
[13] B. Duplantier and I. Binder, Harmonic measure and winding of conformally invariant curves, Phys. Rev. Lett. 89, no. 26 (2002), art. ID 264101.
[14] B. Duplantier and I. Binder, Harmonic measure and winding of random conformal paths: A Coulomb gas perspective, Nucl. Phys. B 802 (2008), 494-513. · Zbl 1190.81118 · doi:10.1016/j.nuclphysb.2008.05.020
[15] B. Duplantier, X. Hieu Ho, T. Binh Le, and M. Zinsmeister, Logarithmic coefficients and generalized multifractality of whole-plane SLE, Comm. Math. Phys., published online 20 December 2017. · Zbl 1417.30006
[16] B. Duplantier, J. Miller, and S. Sheffield, Liouville quantum gravity as a mating of trees, preprint, arXiv:1409.7055v2 [math.PR]. · Zbl 1503.60003
[17] B. Duplantier, C. Nguyen, N. Nguyen, and M. Zinsmeister, The coefficient problem and multifractality of whole-plane SLE & LLE, Ann. Henri Poincaré 16 (2015), 1311-1395. · Zbl 1326.60119 · doi:10.1007/s00023-014-0351-3
[18] B. Duplantier and S. Sheffield, Liouville quantum gravity and KPZ, Invent. Math. 185 (2011), 333-393. · Zbl 1226.81241 · doi:10.1007/s00222-010-0308-1
[19] H. Hedenmalm and A. Sola, Spectral notions for conformal maps: A survey, Comput. Methods Funct. Theory 8 (2008), 447-474. · Zbl 1153.30006 · doi:10.1007/BF03321698
[20] X. Hu, J. Miller, and Y. Peres, Thick points of the Gaussian free field, Ann. Probab. 38 (2010), 896-926. · Zbl 1201.60047 · doi:10.1214/09-AOP498
[21] P. Kraetzer, Experimental bounds for the universal integral means spectrum of conformal maps, Complex Variables Theory Appl. 31 (1996), 305-309. · Zbl 0865.30020 · doi:10.1080/17476939608814969
[22] G. F. Lawler, The dimension of the frontier of planar Brownian motion, Electron. Comm. Probab. 1 (1996), 29-47. · Zbl 0857.60083 · doi:10.1214/ECP.v1-975
[23] G. F. Lawler, Conformally Invariant Processes in the Plane, Math. Surveys Monogr. 114, Amer. Math. Soc., Providence, 2005. · Zbl 1074.60002
[24] G. F. Lawler, “Multifractal analysis of the reverse flow for the Schramm-Loewner evolution,” in Fractal Geometry and Stochastics, IV, Progr. Probab. 61, Birkhäuser, Basel, 2009, 73-107. · Zbl 1191.60095
[25] G. F. Lawler, O. Schramm, and W. Werner, The dimension of the planar Brownian frontier is \(4/3\), Math. Res. Lett. 8, no. 4 (2001), 401-411. · Zbl 1114.60316 · doi:10.4310/MRL.2001.v8.n4.a1
[26] G. F. Lawler, O. Schramm, and W. Werner, Values of Brownian intersection exponents, I: Half-plane exponents, Acta Math. 187 (2001), 237-273. · Zbl 1005.60097 · doi:10.1007/BF02392618
[27] G. F. Lawler, O. Schramm, and W. Werner, Values of Brownian intersection exponents, II: Plane exponents, Acta Math. 187 (2001), 275-308. · Zbl 0993.60083 · doi:10.1007/BF02392619
[28] G. F. Lawler, O. Schramm, and W. Werner, Values of Brownian intersection exponents, III: Two-sided exponents, Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), 109-123. · Zbl 1006.60075 · doi:10.1016/S0246-0203(01)01089-5
[29] G. F. Lawler, O. Schramm, and W. Werner, Conformal restriction: The chordal case, J. Amer. Math. Soc. 16 (2003), 917-955. · Zbl 1030.60096 · doi:10.1090/S0894-0347-03-00430-2
[30] G. F. Lawler, O. Schramm, and W. Werner, Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab. 32 (2004), 939-995. · Zbl 1126.82011 · doi:10.1214/aop/1079021469
[31] J. R. Lind, Hölder regularity of the SLE trace, Trans. Amer. Math. Soc. 360, no. 7 (2008), 3557-3578. · Zbl 1141.60066 · doi:10.1090/S0002-9947-08-04327-4
[32] I. Loutsenko and O. Yermolayeva, Average harmonic spectrum of the whole-plane SLE, J. Stat. Mech. Theory Exp. 2013, no. 4, art. ID P04007. · Zbl 1095.37029
[33] I. Loutsenko and O. Yermolayeva, New exact results in spectra of stochastic Loewner evolution, J. Phys. A 47, no. 16 (2014), art. ID 165202. · Zbl 1296.60223 · doi:10.1088/1751-8113/47/16/165202
[34] N. G. Makarov, Fine structure of harmonic measure (in Russian), Algebra i Analiz 10 (1998), 1-62; English translation in St. Petersburg Math. J. 10 (1999), 217-268. · Zbl 0909.30016
[35] J. Miller, Universality for SLE(4), preprint, arXiv:1010.1356v1 [math.PR].
[36] J. Miller, Dimension of the SLE light cone, the SLE fan, and \(SLE_κ(ρ)\) for \(κ∈(0,4)\) and \(ρ∈[\tfrac{κ}{2}-4,-2)\), Comm. Math. Phys., published online 20 February 2018.
[37] J. Miller and S. Sheffield, Imaginary geometry, I: Interacting SLEs, Probab. Theory Related Fields 164 (2016), 553-705. · Zbl 1336.60162 · doi:10.1007/s00440-016-0698-0
[38] J. Miller and S. Sheffield, Imaginary geometry, II: Reversibility of \(\operatorname{SLE}_κ(ρ_1;ρ_2)\) for \(κ∈(0,4)\), Ann. Probab. 44 (2016), 1647-1722. · Zbl 1344.60078 · doi:10.1214/14-AOP943
[39] J. Miller and S. Sheffield, Imaginary geometry, III: Reversibility of \(\operatorname{SLE}_κ\) for \(κ∈(4,8)\), Ann. of Math. (2) 184 (2016), 455-486. · Zbl 1393.60092 · doi:10.4007/annals.2016.184.2.3
[40] J. Miller and S. Sheffield, Quantum Loewner evolution, Duke Math. J. 165 (2016), 3241-3378. · Zbl 1364.82023 · doi:10.1215/00127094-3627096
[41] J. Miller and S. Sheffield, Imaginary geometry, IV: Interior rays, whole-plane reversibility, and space-filling trees, Probab. Theory Related Fields 169 (2017), 729-869. · Zbl 1378.60108 · doi:10.1007/s00440-017-0780-2
[42] J. Miller and S. Sheffield, Gaussian free field light cones and \(\operatorname{SLE}_κ(ρ)\), preprint, arXiv:1606.02260v2 [math.PR].
[43] J. Miller, S. Sheffield, and W. Werner, CLE percolations, Forum Math. Pi 5 (2017), e4. · Zbl 1390.60356
[44] J. Miller, N. Sun, and D. B. Wilson, The Hausdorff dimension of the CLE gasket, Ann. Probab. 42 (2014), 1644-1665. · Zbl 1305.60078 · doi:10.1214/12-AOP820
[45] J. Miller, S. S. Watson, and D. B. Wilson, The conformal loop ensemble nesting field, Probab. Theory Related Fields 163 (2015), 769-801. · Zbl 1334.60038 · doi:10.1007/s00440-014-0604-6
[46] J. Miller and H. Wu, Intersections of SLE paths: The double and cut point dimension of SLE, Probab. Theory Related Fields 167 (2017), 45-105. · Zbl 1408.60074 · doi:10.1007/s00440-015-0677-x
[47] P. Mörters and Y. Peres, Brownian Motion, with an appendix by O. Schramm and W. Werner, Cambridge Ser. Stat. Probab. Math. 30, Cambridge Univ. Press, Cambridge, 2010. · Zbl 1243.60002
[48] C. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren Math. Wiss. 299, Springer, Berlin, 1992. · Zbl 0762.30001
[49] C. Pommerenke, The integral means spectrum of univalent functions (in Russian), Anal. Teor. Chisel i Teor. Funkts. 14 (1997), 119-128, 229; English translation in J. Math. Sci. (N.Y.) 95 (1999), 2249-2255. · Zbl 0954.30006
[50] S. Rohde and O. Schramm, Basic properties of SLE, Ann. of Math. (2) 161 (2005), 883-924. · Zbl 1081.60069 · doi:10.4007/annals.2005.161.883
[51] O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118 (2000), 221-288. · Zbl 0968.60093 · doi:10.1007/BF02803524
[52] O. Schramm and S. Sheffield, Harmonic explorer and its convergence to \(\text{SLE}_4 \), Ann. Probab. 33 (2005), 2127-2148. · Zbl 1095.60007 · doi:10.1214/009117905000000477
[53] O. Schramm and S. Sheffield, Contour lines of the two-dimensional discrete Gaussian free field, Acta Math. 202 (2009), 21-137. · Zbl 1210.60051 · doi:10.1007/s11511-009-0034-y
[54] O. Schramm and S. Sheffield, A contour line of the continuum Gaussian free field, Probab. Theory Related Fields 157 (2013), 47-80. · Zbl 1331.60090 · doi:10.1007/s00440-012-0449-9
[55] O. Schramm and D. B. Wilson, SLE coordinate changes, New York J. Math. 11 (2005), 659-669. · Zbl 1094.82007
[56] S. Sheffield, Local sets of the Gaussian free field: slides and audio, 2005, www.fields.utoronto.ca/audio/05-06/percolation_SLE/sheffield1, www.fields.utoronto.ca/audio/05-06/percolation_SLE/sheffield2, www.fields.utoronto.ca/audio/05-06/percolation_SLE/sheffield3.
[57] S. Sheffield, Gaussian free fields for mathematicians, Probab. Theory Related Fields 139 (2007), 521-541. · Zbl 1132.60072 · doi:10.1007/s00440-006-0050-1
[58] S. Sheffield, Conformal weldings of random surfaces: SLE and the quantum gravity zipper, Ann. Probab. 44 (2016), 3474-3545. · Zbl 1388.60144 · doi:10.1214/15-AOP1055
[59] S. Smirnov, Conformal invariance in random cluster models, I: Holomorphic fermions in the Ising model, Ann. of Math. (2) 172 (2010), 1435-1467. · Zbl 1200.82011 · doi:10.4007/annals.2010.172.1441
[60] F. Viklund and G. F. Lawler, Optimal Hölder exponent for the SLE path, Duke Math. J. 159 (2011), 351-383. · Zbl 1230.60086 · doi:10.1215/00127094-1433376
[61] F. Viklund and G. F. Lawler, Almost sure multifractal spectrum for the tip of an SLE curve, Acta Math. 209 (2012), 265-322. · Zbl 1271.82007 · doi:10.1007/s11511-012-0087-1
[62] M. Wang and H. Wu, Level lines of Gaussian free field, I: Zero-boundary GFF, Stochastic Process. Appl. 127 (2017), 1045-1124. · Zbl 1358.60066 · doi:10.1016/j.spa.2016.07.009
[63] W. Werner, “Random planar curves and Schramm-Loewner evolutions,” in Lectures on Probability Theory and Statistics, Lecture Notes in Math. 1840, Springer, Berlin, 2004, 107-195. · Zbl 1057.60078
[64] D. Zhan, Duality of chordal SLE, Invent. Math. 174 (2008), 309-353. · Zbl 1158.60047 · doi:10.1007/s00222-008-0132-z
[65] D. Zhan, Reversibility of chordal SLE, Ann. Probab. 36 (2008), 1472-1494. · Zbl 1157.60051
[66] D. Zhan, Duality of chordal SLE, II, Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010), 740-759. · Zbl 1200.60071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.