×

zbMATH — the first resource for mathematics

Improving the pseudo-randomness properties of chaotic maps using deep-zoom. (English) Zbl 06871745
Summary: A generalized method is proposed to compose new orbits from a given chaotic map. The method provides an approach to examine discrete-time chaotic maps in a “deep-zoom” manner by using k-digits to the right from the decimal separator of a given point from the underlying chaotic map. Interesting phenomena have been identified. Rapid randomization was observed, i.e., chaotic patterns tend to become indistinguishable when compared to the original orbits of the underlying chaotic map. Our results were presented using different graphical analyses (i.e., time-evolution, bifurcation diagram, Lyapunov exponent, Poincaré diagram, and frequency distribution). Moreover, taking advantage of this randomization improvement, we propose a Pseudo-Random Number Generator (PRNG) based on the k-logistic map. The pseudo-random qualities of the proposed PRNG passed both tests successfully, i.e., DIEHARD and NIST, and were comparable with other traditional PRNGs such as the Mersenne Twister. The results suggest that simple maps such as the logistic map can be considered as good PRNG methods.
©2017 American Institute of Physics

MSC:
65C10 Random number generation in numerical analysis
37N30 Dynamical systems in numerical analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Knuth, D. E., The Art of Computer Programming, (1997), Addison Wesley Longman Publishing Co., Inc.: Addison Wesley Longman Publishing Co., Inc., Boston, MA, USA · Zbl 0883.68015
[2] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T., Numerical Recipes in C: The Art of Scientific Computing, pp. 269-277, (1992), Cambridge University Press: Cambridge University Press, Cambridge, UK
[3] Bratley, P.; Fox, B.; Schrage, L., A Guide to Simulation, (1987), Springer-Verlag: Springer-Verlag, New York
[4] Wang, Z.; Bauch, C. T.; Bhattacharyya, S.; d’Onofrio, A.; Manfredi, P.; Percž, M.; Perra, N.; Salathé, M.; Zhao, D., Statistical physics of vaccination, Phys. Rep., 664, 1-113, (2016) · Zbl 1359.92111
[5] Metropolis, N.; Ulam, S. M., The Monte Carlo method, J. Am. Stat. Assoc., 44, 335-341, (1949) · Zbl 0033.28807
[6] Menezes, A. J.; Vanstone, S. A.; Oorschot, P. C. V., Handbook of Applied Cryptography, (1996), CRC Press, Inc: CRC Press, Inc, Boca Raton, FL, USA · Zbl 0868.94001
[7] Goldreich, O., A Primer on Pseudorandom Generators, (2010), American Mathematical Society: American Mathematical Society, Providence, RI, USA · Zbl 1210.68061
[8] Silverman, M.; Strange, W.; Silverman, C. R.; Lipscombe, T., Tests of alpha-, beta-, and electron capture decays for randomness, Phys. Lett. A, 262, 265-273, (1999)
[9] Walker, J., HotBits: Genuine random numbers, generated by radioactive decay, 2006.
[10] Bucci, M.; Luzzi, R.; Germani, L.; Trifiletti, A.; Varanonuovo, M., A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC, IEEE Trans. Comput., 52, 403-409, (2003)
[11] Holman, W. T.; Connelly, J. A.; Dowlatabadi, A. B., An integrated analog/digital random noise source, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 44, 521-528, (1997)
[12] Haahr, M., random.org: Introduction to randomness and random numbers, 1999.
[13] Noll, L.; Mende, R.; Sisodiya, S., Method for seeding a pseudo-random number generator with a cryptographic hash of a digitization of a chaotic system, (1998)
[14] Ren, M.; Wu, E.; Liang, Y.; Jian, Y.; Wu, G.; Zeng, H., Quantum random-number generator based on a photon-number-resolving detector, Phys. Rev. A, 83, 023820, (2011)
[15] Xu, F.; Qi, B.; Ma, X.; Xu, H.; Zheng, H.; Lo, H.-K., Ultrafast quantum random number generation based on quantum phase fluctuations, Opt. Express, 20, 12366-12377, (2012)
[16] ID Quantique SA, Random number generation using quantum physics. Version 3.0, 2010.
[17] Diaconis, P.; Holmes, S.; Montgomery, R., Dynamical bias in the coin toss, SIAM Rev., 49, 211-235, (2007) · Zbl 05167724
[18] Matsumoto, M.; Nishimura, T., Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Trans. Model. Comput. Simul., 8, 3-30, (1998) · Zbl 0917.65005
[19] Eichenauer, J.; Lehn, J., A non-linear congruential pseudo random number generator, Stat. Hefte, 27, 315-326, (1986) · Zbl 0607.65001
[20] Peinado, A.; Fúster-Sabater, A., Generation of pseudorandom binary sequences by means of linear feedback shift registers (LFSRs) with dynamic feedback, Math. Comput. Modell., 57, 2596-2604, (2013)
[21] Markowsky, G., The sad history of random bits, J. Cyber Secur. Mobility, 3, 1-24, (2014)
[22] Hodges, A., Alan Turing: The Enigma, (2000), Walker & Company · Zbl 0541.68001
[23] Kocarev, L., Chaos-based cryptography: A brief overview, IEEE Circuits Syst. Mag., 1, 6-21, (2001)
[24] Patidar, V.; Sud, K. K.; Pareek, N. K., A pseudo random bit generator based on chaotic logistic map and its statistical testing, Informatica, 33, 441-452, (2009) · Zbl 1189.68057
[25] Baptista, M., Cryptography with chaos, Phys. Lett. A, 240, 50-54, (1998) · Zbl 0936.94013
[26] Wolfram, S., Cryptography with cellular automata, Lecture Notes in Computer Sciences; 218 on Advances in Cryptology—CRYPTO 85, 429-432, (1986), Springer-Verlag, New York, Inc: Springer-Verlag, New York, Inc, New York, NY, USA
[27] Alvarez, G.; Li, S., Some basic cryptographic requirements for chaos-based cryptosystems, Int. J. Bifurcation Chaos, 16, 2129-2151, (2006) · Zbl 1192.94088
[28] Machicao, J.; Baetens, J. M.; Marco, A. G.; De Baets, B.; Bruno, O. M., A dynamical systems approach to the discrimination of the modes of operation of cryptographic systems, Commun. Nonlinear Sci. Numer. Simul., 29, 102-115, (2015)
[29] Arroyo, D., Framework for the analysis and design of encryption strategies based on discrete-time chaotic dynamical systems, (2009), Universidad Politécnica de Madrid
[30] Marco, A.; Martinez, A. S.; Bruno, O. M., Fast, parallel and secure cryptography algorithm using Lorenz’s attractor, Int. J. Mod. Phys. C, 21, 365, (2010) · Zbl 1186.37046
[31] Nian-sheng, L., Pseudo-randomness and complexity of binary sequences generated by the chaotic system, Commun. Nonlinear Sci. Numer. Simul., 16, 761-768, (2011) · Zbl 1221.37234
[32] Dabal, P.; Pelka, R., A chaos-based pseudo-random bit generator implemented in FPGA device, 151-154, (2011)
[33] Behnia, S.; Akhavan, A.; Akhshani, A.; Samsudin, A., A novel dynamic model of pseudo random number generator, J. Comput. Appl. Math., 235, 3455-3463, (2011) · Zbl 1217.65006
[34] Min, L.; Hu, K.; Zhang, L.; Zhang, Y., Study on pseudorandomness of some pseudorandom number generators with application, 569-574, (2013)
[35] Hu, H.; Liu, L.; Ding, N., Pseudorandom sequence generator based on the chen chaotic system, Comput. Phys. Commun., 184, 765-768, (2013)
[36] Min, L.; Chen, T.; Zang, H., Analysis of fips 140-2 test and chaos-based pseudorandom number generator, Chaotic Model. Simul., 2, 273-280, (2013)
[37] François, M.; Grosges, T.; Barchiesi, D.; Erra, R., Pseudo-random number generator based on mixing of three chaotic maps, Commun. Nonlinear Sci. Numer. Simul., 19, 887-895, (2014)
[38] Öztürk, İ.; Kılıç, R., A novel method for producing pseudo random numbers from differential equation-based chaotic systems, Nonlinear Dyn., 80, 1147-1157, (2015)
[39] Tomassini, M.; Sipper, M.; Perrenoud, M., On the generation of high-quality random numbers by two-dimensional cellular automata, IEEE Trans. Comput., 49, 1146-1151, (2000) · Zbl 1315.68187
[40] Machicao, J.; Marco, A.; Bruno, O. M., Chaotic encryption method based on life-like cellular automata, Expert Syst. Appl., 39, 12626-12635, (2012)
[41] Spencer, J., Pseudorandom bit generators from enhanced cellular automata, J. Cell. Autom., 10, 295-317, (2015) · Zbl 1338.68197
[42] Akhshani, A.; Akhavan, A.; Lim, S.-C.; Hassan, Z., An image encryption scheme based on quantum logistic map, Commun. Nonlinear Sci. Numer. Simul., 17, 4653-4661, (2012) · Zbl 1266.81052
[43] Akhshani, A.; Akhavan, A.; Mobaraki, A.; Lim, S.-C.; Hassan, Z., Pseudo random number generator based on quantum chaotic map, Commun. Nonlinear Sci. Numer. Simul., 19, 101-111, (2014) · Zbl 1344.65009
[44] Yang, Y.-G.; Zhao, Q.-Q., Novel pseudo-random number generator based on quantum random walks, Sci. Rep., 6, 20362, (2016)
[45] Uchida, A.; Amano, K.; Inoue, M.; Hirano, K.; Naito, S.; Someya, H.; Oowada, I.; Kurashige, T.; Shiki, M.; Yoshimori, S.; Yoshimura, K.; Davis, P., Fast physical random bit generation with chaotic semiconductor lasers, Nat. Photonics, 2, 728-732, (2008)
[46] Kanter, I.; Aviad, Y.; Reidler, I.; Cohen, E.; Rosenbluh, M., An optical ultrafast random bit generator, Nat. Photonics, 4, 58-61, (2010)
[47] Álvarez, G.; Montoya, F.; Romera, M.; Pastor, G., Cryptanalysis of an ergodic chaotic cipher, Phys. Lett. A, 311, 172-179, (2003) · Zbl 1027.94009
[48] Persohn, K.; Povinelli, R., Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation, Chaos, Solitons Fractals, 45, 238-245, (2012)
[49] Hu, H.; Deng, Y.; Liu, L., Counteracting the dynamical degradation of digital chaos via hybrid control, Commun. Nonlinear Sci. Numer. Simul., 19, 1970-1984, (2014)
[50] Mandelbrot, B., The Fractal Geometry of Nature, (1982), Henry Holt and Company · Zbl 0504.28001
[51] Marsaglia, G., The Marsaglia random number CDROM, with the DIEHARD battery of tests of randomness, 1998.
[52] Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.; Heckert, A., NIST special publication 800-22: A statistical test suite for random number generator for cryptographic applications, (2001), National Institute of Standards and Technology: National Institute of Standards and Technology, Gaithersburg, MD
[53] Ott, E., Chaos in Dynamical Systems, (2002), Cambridge University Press · Zbl 1006.37001
[54] Li, S.; Li, Q.; Li, W.; Mou, X.; Cai, Y.; Honary, B., Statistical properties of digital piecewise linear chaotic maps and their roles in cryptography and pseudo-random coding, Proceedings of 8th IMA International Conference Cryptography and Coding, Cirencester, UK, December 17-19 2001, 205-221, (2001), Springer: Springer, Berlin, Heidelberg · Zbl 0998.94543
[56] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining lyapunov exponents from a time series, Phys. D: Nonlinear Phenom., 16, 285-317, (1985) · Zbl 0585.58037
[57] Hao, B.-L., Elementary Symbolic Dynamics and Chaos in Dissipative Systems, (1989), World Scientific: World Scientific, Singapore; Teaneck, N.J. · Zbl 0724.58001
[58] Alligood, K.; Sauer, T.; Yorke, J., Chaos: An Introduction to Dynamical Systems, (2012), Springer: Springer, New York
[59] Collet, P.; Eckmann, J., Iterated Maps on the Interval as Dynamical Systems, (2009), Birkhäuser, Boston · Zbl 1192.37003
[60] Luke, S.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.