zbMATH — the first resource for mathematics

Roper resonances and quasi-normal modes of skyrmions. (English) Zbl 1388.81254
Summary: Radial vibrations of charge one hedgehog Skyrmions in the full Skyrme model are analysed. We investigate how the properties of the lowest resonance modes (quasi normal modes) – their frequencies and widths – depend on the form of the potential (value of the pion mass as well as the addition of further potentials) and on the inclusion of the sextic term. Then we consider the inverse problem, where certain values for the frequencies and widths are imposed, and the field theoretic Skyrme model potential giving rise to them is reconstructed. This latter method allows to reproduce the physical Roper resonances, as well as further physical properties of nucleons, with high precision.

81T10 Model quantum field theories
35Q51 Soliton equations
Full Text: DOI arXiv
[1] Skyrme, THR, A nonlinear field theory, Proc. Roy. Soc. Lond., A 260, 127, (1961) · Zbl 0102.22605
[2] Skyrme, THR, A unified field theory of mesons and baryons, Nucl. Phys., 31, 556, (1962)
[3] Skyrme, THR, Kinks and the Dirac equation, J. Math. Phys., 12, 1735, (1971)
[4] G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys.B 72 (1974) 461 [INSPIRE]. · Zbl 1331.81290
[5] Witten, E., Baryons in the 1/n expansion, Nucl. Phys., B 160, 57, (1979)
[6] E. Witten, Current Algebra, Baryons and Quark Confinement, Nucl. Phys.B 223 (1983) 433 [INSPIRE].
[7] G.S. Adkins, C.R. Nappi and E. Witten, Static Properties of Nucleons in the Skyrme Model, Nucl. Phys.B 228 (1983) 552 [INSPIRE].
[8] G.S. Adkins and C.R. Nappi, The Skyrme Model with Pion Masses, Nucl. Phys.B 233 (1984) 109 [INSPIRE].
[9] A. Jackson, A.D. Jackson, A.S. Goldhaber, G.E. Brown and L.C. Castillejo, A Modified Skyrmion, Phys. Lett.B 154 (1985) 101 [INSPIRE].
[10] Holzwarth, G.; Schwesinger, B., Baryons in the Skyrme model, Rept. Prog. Phys., 49, 825, (1986)
[11] Zahed, I.; Brown, GE, The Skyrme model, Phys. Rept., 142, 1, (1986)
[12] B. Schwesinger and H. Weigel, Vector Mesons Versus Higher Order Terms in the Skyrme Model Approach to Baryon Resonances, Nucl. Phys.A 465 (1987) 733 [INSPIRE]. · Zbl 1037.81101
[13] H. Weigel, B. Schwesinger and G. Holzwarth, Exotic Baryon Number B = 2 States in the SU(2) Skyrme Model, Phys. Lett.B 168 (1986) 321 [INSPIRE].
[14] Schwesinger, B.; Weigel, H.; Holzwarth, G.; Hayashi, A., The Skyrme soliton in pion, vector and scalar meson fields: πN scattering and photoproduction, Phys. Rept., 173, 173, (1989)
[15] Braaten, E.; Carson, L., The deuteron as a soliton in the Skyrme model, Phys. Rev. Lett., 56, 1897, (1986)
[16] E. Braaten and L. Carson, The Deuteron as a Toroidal Skyrmion, Phys. Rev.D 38 (1988) 3525 [INSPIRE].
[17] L. Carson, \(B\) = 3 nuclei as quantized multiskyrmions, Phys. Rev. Lett.66 (1991) 1406 [INSPIRE].
[18] T.S. Walhout, Multiskyrmions as nuclei, Nucl. Phys.A 531 (1991) 596 [INSPIRE].
[19] O.V. Manko, N.S. Manton and S.W. Wood, Light nuclei as quantized skyrmions, Phys. Rev.C 76 (2007) 055203 [arXiv:0707.0868] [INSPIRE].
[20] R.A. Battye, N.S. Manton, P.M. Sutcliffe and S.W. Wood, Light Nuclei of Even Mass Number in the Skyrme Model, Phys. Rev.C 80 (2009) 034323 [arXiv:0905.0099] [INSPIRE].
[21] C.J. Halcrow, Vibrational quantisation of the B = 7 Skyrmion, Nucl. Phys.B 904 (2016) 106 [arXiv:1511.00682] [INSPIRE]. · Zbl 1332.81277
[22] Lau, PHC; Manton, NS, States of carbon-12 in the Skyrme model, Phys. Rev. Lett., 113, 232503, (2014)
[23] C.J. Halcrow, C. King and N.S. Manton, A dynamical α-cluster model of\^{16}\(O\), Phys. Rev.C 95 (2017) 031303 [arXiv:1608.05048] [INSPIRE].
[24] Adam, C.; Naya, C.; Sanchez-Guillen, J.; Wereszczynski, A., Bogomol’nyi-Prasad-Sommerfield Skyrme model and nuclear binding energies, Phys. Rev. Lett., 111, 232501, (2013) · Zbl 1331.81290
[25] C. Adam, C. Naya, J. Sanchez-Guillen and A. Wereszczynski, Nuclear binding energies from a Bogomol’nyi-Prasad-Sommerfield Skyrme model, Phys. Rev.C 88 (2013) 054313 [arXiv:1309.0820] [INSPIRE].
[26] M. Gillard, D. Harland and M. Speight, Skyrmions with low binding energies, Nucl. Phys.B 895 (2015) 272 [arXiv:1501.05455] [INSPIRE]. · Zbl 1329.81416
[27] M. Gillard, D. Harland, E. Kirk, B. Maybee and M. Speight, A point particle model of lightly bound skyrmions, Nucl. Phys.B 917 (2017) 286 [arXiv:1612.05481] [INSPIRE]. · Zbl 1371.81361
[28] S.B. Gudnason, Loosening up the Skyrme model, Phys. Rev.D 93 (2016) 065048 [arXiv:1601.05024] [INSPIRE].
[29] S.B. Gudnason, B. Zhang and N. Ma, Generalized Skyrme model with the loosely bound potential, Phys. Rev.D 94 (2016) 125004 [arXiv:1609.01591] [INSPIRE].
[30] S.B. Gudnason and M. Nitta, Modifying the pion mass in the loosely bound Skyrme model, Phys. Rev.D 94 (2016) 065018 [arXiv:1606.02981] [INSPIRE].
[31] C. Adam, C. Naya, J. Sanchez-Guillen, R. Vazquez and A. Wereszczynski, BPS Skyrmions as neutron stars, Phys. Lett.B 742 (2015) 136 [arXiv:1407.3799] [INSPIRE].
[32] C. Adam, C. Naya, J. Sanchez-Guillen, R. Vazquez and A. Wereszczynski, Neutron stars in the Bogomol’nyi-Prasad-Sommerfield Skyrme model: Mean-field limit versus full field theory, Phys. Rev.C 92 (2015) 025802 [arXiv:1503.03095] [INSPIRE].
[33] S.G. Nelmes and B.M.A.G. Piette, Skyrmion stars and the multilayered rational map ansatz, Phys. Rev.D 84 (2011) 085017.
[34] S.G. Nelmes and B.M.A.G. Piette, Phase transition and anisotropic deformations of neutron star matter, Phys. Rev.D 85 (2012) 123004.
[35] Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys.C 38 (2014) 090001 [INSPIRE].
[36] P. Dorey and T. Romanczukiewicz, Resonant kink-antikink scattering through quasinormal modes, Phys. Lett.B 779 (2018) 117 [arXiv:1712.10235] [INSPIRE].
[37] C. Adam, M. Haberichter and A. Wereszczynski, Skyrme models and nuclear matter equation of state, Phys. Rev.C 92 (2015) 055807 [arXiv:1509.04795] [INSPIRE].
[38] C. Adam, C. Naya, J. Sanchez-Guillen, J.M. Speight and A. Wereszczynski, Thermodynamics of the BPS Skyrme model, Phys. Rev.D 90 (2014) 045003 [arXiv:1405.2927] [INSPIRE]. · Zbl 1331.81290
[39] L.P. Teo, Fermionic Casimir interaction in cylinder-plate and cylinder-cylinder geometries, Phys. Rev.D 91 (2015) 125030 [arXiv:1504.05317] [INSPIRE].
[40] A. Jackson, A.D. Jackson, A.S. Goldhaber, G.E. Brown and L.C. Castillejo, A Modified Skyrmion, Phys. Lett.B 154 (1985) 101 [INSPIRE].
[41] C. Hajduk and B. Schwesinger, The breathing mode of nucleons and Δ-isobars in the Skyrme model, Phys. Lett.B 140 (1984) 172 [INSPIRE].
[42] U.B. Kaulfuss and U.G. Meissner, The Breathing Mode of the Modified Skyrmion, Phys. Lett.B 154 (1985) 193 [INSPIRE].
[43] A. Hayashi and G. Holzwarth, Excited nucleon states in the Skyrme model, Phys. Lett.B 140 (1984) 175 [INSPIRE].
[44] L.C. Biedenharn, Y. Dothan and M. Tarlini, Rotational-Vibrational Coupling in the Skyrmion Model for Baryons, Phys. Rev.D 31 (1985) 649 [INSPIRE].
[45] C. Adam, C. Naya, J. Sanchez-Guillen and A. Wereszczynski, Rotational-vibrational coupling in the BPS Skyrme model of baryons, Phys. Lett.B 726 (2013) 892. · Zbl 1331.81290
[46] I. Zahed, U.G. Meissner and U.B. Kaulfuss, Low lying resonances in the Skyrme model using the semiclassical approximation, Nucl. Phys.A 426 (1984) 525 [INSPIRE].
[47] Breit, JD; Nappi, CR, Phase shifts of the skyrmion breathing mode, Phys. Rev. Lett., 53, 889, (1984)
[48] W.T. Lin and B. Piette, Skyrmion Vibration Modes within the Rational Map Ansatz, Phys. Rev.D 77 (2008) 125028 [arXiv:0804.4786] [INSPIRE].
[49] P. Bizon, T. Chmaj and A. Rostworowski, On asymptotic stability of the Skyrmion, Phys. Rev.D 75 (2007) 121702 [math-ph/0701037] [INSPIRE]. · Zbl 1120.83028
[50] C. Adam, M. Haberichter, T. Romanczukiewicz and A. Wereszczynski, Radial vibrations of BPS skyrmions, Phys. Rev.D 94 (2016) 096013 [arXiv:1607.04286] [INSPIRE]. · Zbl 1388.81254
[51] M. Heusler, S. Droz and N. Straumann, Stability analysis of selfgravitating skyrmions, Phys. Lett.B 271 (1991) 61 [INSPIRE].
[52] Battye, RA; Sutcliffe, PM, Skyrmions, fullerenes and rational maps, Rev. Math. Phys., 14, 29, (2002) · Zbl 1037.81101
[53] U. Ascher, J. Christiansen and R. Russell, Collocation Software for Boundary-Value ODEs, ACM TOMS7 (1981) 209. · Zbl 0455.65067
[54] Ascher, U.; Christiansen, J.; Russell, R., A collocation solver for mixed order systems of boundary value problems, Math. Comput., 33, 659, (1979) · Zbl 0407.65035
[55] Scipy, scientific tools for python, version 0.6.0, http://www.scipy.org.
[56] T. Ioannidou and A. Lukacs, Time-dependent Bogomolny-Prasad-Sommerfeld skyrmions, J. Math. Phys.57 (2016) 022901 [arXiv:1601.03048] [INSPIRE]. · Zbl 1332.81244
[57] P. Dorey, A. Halavanau, J. Mercer, T. Romanczukiewicz and Y. Shnir, Boundary scattering in the\( ϕ \)\^{4}model, JHEP05 (2017) 107 [arXiv:1508.02329] [INSPIRE]. · Zbl 1380.81310
[58] Romanczukiewicz, T.; Shnir, Y., Oscillons in the presence of external potential, JHEP, 01, 101, (2018) · Zbl 1384.83034
[59] C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A Skyrme-type proposal for baryonic matter, Phys. Lett.B 691 (2010) 105 [arXiv:1001.4544] [INSPIRE].
[60] C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A BPS Skyrme model and baryons at large N_{\(c\)}, Phys. Rev.D 82 (2010) 085015 [arXiv:1007.1567] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.