zbMATH — the first resource for mathematics

Temporal ordering of substitutions in RNA evolution: uncovering the structural evolution of the Human Accelerated Region 1. (English) Zbl 1394.92100
Summary: The Human Accelerated Region 1 (HAR1) is the most rapidly evolving region in the human genome. It is part of two overlapping long non-coding RNAs, has a length of only 118 nucleotides and features 18 human specific changes compared to an ancestral sequence that is extremely well conserved across non-human primates. The human HAR1 forms a stable secondary structure that is strikingly different from the one in chimpanzee as well as other closely related species, again emphasizing its human-specific evolutionary history. This suggests that positive selection has acted to stabilize human-specific features in the ensemble of HAR1 secondary structures. To investigate the evolutionary history of the human HAR1 structure, we developed a computational model that evaluates the relative likelihood of evolutionary trajectories as a probabilistic version of a Hamiltonian path problem. The model predicts that the most likely last step in turning the ancestral primate HAR1 into the human HAR1 was exactly the substitution that distinguishes the modern human HAR1 sequence from that of Denisovan, an archaic human, providing independent support for our model. The MutationOrder software is available for download and can be applied to other instances of RNA structure evolution.
92D20 Protein sequences, DNA sequences
92D15 Problems related to evolution
92-08 Computational methods for problems pertaining to biology
Full Text: DOI
[1] 1000 Genomes project consortium and others, A global reference for human genetic variation, Nature, 526, 7571, 68-74, (2015)
[2] Bellman, R., Dynamic programming treatment of the travelling salesman problem, J. ACM, 9, 61-63, (1962) · Zbl 0106.14102
[3] Beniaminov, A.; Westhof, E.; Krol, A., Distinctive structures between chimpanzee and human in a brain noncoding RNA, RNA, 14, 7, 1270-1275, (2008)
[4] Bjorklund, A., Determinant sums for undirected Hamiltonicity, Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, 173-182, (2010), IEEE
[5] Flamm, C.; Hofacker, I. L.; Stadler, P. F.; Wolfinger, M. T., Barrier trees of degenerate landscapes, Z. Phys. Chem., 216, 155-173, (2002)
[6] Fontana, W.; Stadler, P. F.; Bornberg-Bauer, E. G.; Griesmacher, T.; Hofacker, I. L.; Tacker, M.; Tarazona, P.; Weinberger, E. D.; Schuster, P., RNA folding landscapes and combinatory landscapes, Phys. Rev. E, 47, 2083-2099, (1993)
[7] Hinze, R.; Wu, N., Histo-and dynamorphisms revisited, Proceedings of the 9th ACM SIGPLAN Workshop on Generic Programming, 1-12, (2013), ACM
[8] Höner zu Siederdissen, C.; Prohaska, S. J.; Stadler, P. F., Algebraic dynamic programming over general data structures, BMC Bioinform., 16, 19, S2, (2015)
[9] Huynen, M. A.; Stadler, P. F.; Fontana, W., Smoothness within ruggedness: the role of neutrality in adaptation, Proc. Natl. Acad. Sci. (USA), 93, 397-401, (1996)
[10] Johnson, R.; Richter, N.; Jauch, R.; Gaughwin, P. M.; Zuccato, C.; Cattaneo, E.; Stanton, L. W., Human accelerated region 1 noncoding RNA is repressed by REST in huntington’s disease, Physiol. Genom., 41, 3, 269-274, (2010)
[11] Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S. J.; Marra, M. A., Circos: an information aesthetic for comparative genomics, Genome Res., 19, 9, 1639-1645, (2009)
[12] Laubichler, M. D.; Stadler, P. F.; Prohaska, S. J.; Nowick, K., The relativity of biological function, Theory Biosci., 143, 143-147, (2015)
[13] Lorenz, R.; Bernhart, S. H.; Höner zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P. F.; Hofacker, I. L., Viennarna package 2.0, Algorithm. Mol. Biol., 6, 1, 1, (2011)
[14] Lu, Z. J.; Turner, D. H.; Mathews, D. H., A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation, Nucleic Acids Res., 34, 17, 4912-4924, (2006)
[15] Meyer, M.; Kircher, M.; Gansauge, M. T.; Li, H.; Racimo, F.; Mallick, S.; Schraiber, J.; Jay, F.; Prüfer, K.; de Filippo, C.; Sudmant, P. H.; Alkan, C.; Fu, Q.; Do, R.; Rohland, N.; Tandon, A.; Siebauer, M.; Green, R. E.; Bryc, K.; Briggs, A. W.; Stenzel, U.; Dabney, J.; Shendure, J.; Kitzman, J.; Hammer, M. F.; Shunkov, M. V.; Derevianko, A. P.; Patterson, N.; Andrés, A. M.; Eichler, E. E.; Slatkin, M.; Reich, D.; Kelso, J.; Pääbo, S., A high-coverage genome sequence from an archaic denisovan individual, Science, 338, 222-226, (2012)
[16] Nawrocki, E. P.; Eddy, S. R., Infernal 1.1: 100-fold faster RNA homology searches, Bioinformatics, 29, 22, 2933-2935, (2013)
[17] Piñero, J.; Bravo, À.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong, L. I., Disgenet: a comprehensive platform integrating information on human disease-associated genes and variants, Nucleic Acids Res., 45, D833-D839, (2017)
[18] Pollard, K. S.; Salama, S. R.; Lambert, N.; Lambot, M.-A.; Coppens, S.; Pedersen, J. S.; Katzman, S.; King, B.; Onodera, C.; Siepel, A., An RNA gene expressed during cortical development evolved rapidly in humans, Nature, 443, 7108, 167-172, (2006)
[19] Sabarinathan, R.; Tafer, H.; Seemann, S. E.; Hofacker, I. L.; Stadler, P. F.; Gorodkin, J., : efficient detection of local RNA secondary structure changes induced by SNPs, Hum. Mut., 34, 546-556, (2013)
[20] Schuster, P.; Fontana, W.; Stadler, P. F.; Hofacker, I. L., From sequences to shapes and back: a case study in RNA secondary structures, Proc. Roy. Soc. Lond. B, 255, 279-284, (1994)
[21] Tulpan, D., 2015. The circular secondary structure uncertainty plot (CS2-UPlot) - visualizing RNA secondary structure with base pair binding. Accessed: 2017-22-10 http://biovis.net/year/2015/papers/circular-secondary-structure-uncertainty-plotcs2-uplot-visualizing-rna-secondary.html.
[22] Ziegeler, M.; Cevec, M.; Richter, C.; Schwalbe, H., NMR studies of HAR1 RNA secondary structures reveal conformational dynamics in the human RNA, ChemBioChem, 13, 14, 2100-2112, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.