×

A blow-up result to a delayed Cauchy viscoelastic problem. (English) Zbl 1394.35054

Summary: In this paper, we consider a Cauchy problem for a nonlinear viscoelastic equation with delay. Under suitable conditions on the initial data and the relaxation function, in the whole space, we prove a finite-time blow-up result.

MSC:

35B44 Blow-up in context of PDEs
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35L15 Initial value problems for second-order hyperbolic equations
35L70 Second-order nonlinear hyperbolic equations
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] A. Benaissa, A. Benguessoum and S.A. Messaoudi, Global existence and energy decay of solutions of wave equation with a delay term in the nonlinear internal feedback, Int. J. Dynam. Syst. Differ. Eqs. 5 (2014). · Zbl 1331.35356 · doi:10.1504/IJDSDE.2014.067080
[2] E.M. Ait Benhassi, K. Ammari, S. Boulite and L. Maniar, Feedback stabilization of a class of evolution equations with delay, J. Evol. Eq. 9 (2009), 103-121. · Zbl 1239.93092 · doi:10.1007/s00028-009-0004-z
[3] J. Ball, Remarks on blow up and nonexistence theorems for nonlinear evolutions equations, Quart. J. Math. Oxford 28 (1977), 473-486. · Zbl 0377.35037
[4] M.M. Cavalcanti, V.N. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Meth. Appl. Sci. 24 (2001), 1043-1053. · Zbl 0988.35031 · doi:10.1002/mma.250
[5] V. Georgiev and G. Todorova, Existence of solutions of the wave equation with nonlinear damping and source terms, J. Diff. Eqs. 109 (1994), 295-308. · Zbl 0803.35092 · doi:10.1006/jdeq.1994.1051
[6] M. Kafini, Rate of decay for solutions of viscoelastic evolution equations, Electr. J. Diff. Eqs. 134(2013), 1-17. · Zbl 1288.35079
[7] M. Kafini and S. Messaoudi, A blow-up result in a system of nonlinear viscoelastic wave equations with arbitrary positive initial energy, Indagat. Math. 24 (2013), 602-612. · Zbl 1282.35232 · doi:10.1016/j.indag.2013.04.001
[8] —-, A blow-up result in a nonlinear wave equation with delay, Mediterr. J. Math. 13 (2016), 237-247. · Zbl 1343.35044
[9] M. Kafini, S. Messaoudi, M.I. Mustafa and A. Tijani, Well-posedness and stability results in a Timoshenko-type system of thermoelasticity of type III with delay, Z. Angew. Math. Phys. (ZAMP) 66 (2015), 1499-1517. · Zbl 1348.35031 · doi:10.1007/s00033-014-0475-9
[10] H.A. Levine, Instability and nonexistence of global solutions of nonlinear wave equation of the form \(Pu_{tt}=Au+F(u)\), Trans. Amer. Math. Soc. 192 (1974), 1-21. · Zbl 0288.35003
[11] —-, Some additional remarks on the nonexistence of global solutions to nonlinear wave equation, SIAM J. Math. Anal. 5 (1974), 138-146. · Zbl 0243.35069
[12] H.A. Levine, S. Park and J. Serrin, Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation, J. Math. Anal. Appl. 228 (1998), 181-205. · Zbl 0922.35094 · doi:10.1006/jmaa.1998.6126
[13] H.A. Levine and J. Serrin, A global nonexistence theorem for quasilinear evolution equation with dissipation, Arch. Rat. Mech. Anal. 137 (1997), 341-361. · Zbl 0886.35096 · doi:10.1007/s002050050032
[14] K. Liu, Locally distributed control and damping for the conservative systems, SIAM J. Contr. Optim. 35 (1997), 1574-1590. · Zbl 0891.93016
[15] S.A. Messaoudi, Blow up in a nonlinearly damped wave equation, Math. Nachr. 231 (2001), 1-7. · Zbl 0990.35102 · doi:10.1002/1522-2616(200111)231:1<105::AID-MANA105>3.0.CO;2-I
[16] —-, Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr. 260 (2003), 58-66. · Zbl 1035.35082
[17] —-, Blow up in the Cauchy problem for a nonlinearly damped wave equation, Comm. Appl. Anal. 7 (2003), 379-386. · Zbl 1085.35108
[18] —-, Blow up of solutions with positive initial energy in a nonlinear viscoelastic equation, J. Math. Anal. Appl. 320 (2006), 902-915. · Zbl 1098.35031
[19] S.A. Messaoudi and B. Said-Houari, Blow up of solutions of a class of wave equations with nonlinear damping and source terms, Math. Meth. Appl. Sci. 27 (2004), 1687-1696. · Zbl 1073.35178
[20] M.I. Mustafa, Uniform stability for thermoelastic systems with boundary time-varying delay, J. Math. Anal. Appl. 383 (2011), 490-498. · Zbl 1222.35034
[21] S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Contr. Optim. 45 (2006), 1561-1585. · Zbl 1180.35095 · doi:10.1137/060648891
[22] —-, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Int. Eqs. 21 (2008), 935-958. · Zbl 1224.35247
[23] S. Nicaise, C. Pignotti and J. Valein, Exponential stability of the wave equation with boundary time-varying delay, Discr. Contin. Dynam. Syst. 4 (2011), 693-722. · Zbl 1215.35030
[24] S. Nicaise, J. Valein and E. Fridman, Stability of the heat and the wave equations with boundary time-varying delays, Discr. Contin. Dynam. Syst. 2 (2009), 559-581. · Zbl 1171.93029 · doi:10.3934/dcdss.2009.2.559
[25] G. Todorova, Cauchy problem for a nonlinear wave with nonlinear damping and source terms, C.R. Acad. Sci. Paris 326 (1998), 191-196. · Zbl 0922.35095 · doi:10.1016/S0764-4442(97)89469-4
[26] —-, Stable and unstable sets for the Cauchy problem for a nonlinear wave with nonlinear damping and source terms, J. Math. Anal. Appl. 239 (1999), 213-226. · Zbl 0934.35095 · doi:10.1006/jmaa.1999.6528
[27] E. Vitillaro, Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Rat. Mech. Anal. 149 (1999), 155-182. · Zbl 0934.35101 · doi:10.1007/s002050050171
[28] S.T. Wu, Blow-up of solutions for an integro-differential equation with a nonlinear source, Electr. J. Diff. Eqs. 2006 (2006), 1-9. · Zbl 1112.35345
[29] Zhou Yong, A blow-up result for a nonlinear wave equation with damping and vanishing initial energy in \(\mathbb{R}^n \), Appl. Math. Lett. 18 (2005), 281-286. · Zbl 1071.35095
[30] E. Zuazua, Exponential decay for the semi-linear wave equation with locally distributed damping, Comm. Part. Diff. Eqs. 15 (1990), 205-235. · Zbl 0716.35010 · doi:10.1080/03605309908820684
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.