Girela, Daniel; Merchán, Noel A generalized Hilbert operator acting on conformally invariant spaces. (English) Zbl 1496.47054 Banach J. Math. Anal. 12, No. 2, 374-398 (2018). Summary: If \(\mu\) is a positive Borel measure on the interval \([0,1)\), we let \(\mathcal{H}_{\mu}\) be the Hankel matrix \(\mathcal{H}_{\mu}=(\mu_{n,k})_{n,k\geq0}\) with entries \(\mu_{n,k}=\mu_{n+k}\), where, for \(n=0,1,2,\dots\), \(\mu_{n}\) denotes the moment of order \(n\) of \(\mu\). This matrix formally induces the operator \[ \mathcal{H}_{\mu}(f)(z)=\sum_{n=0}^{\infty}(\sum_{k=0}^{\infty}\mu_{n,k}{a_{k}})z^{n} \] on the space of all analytic functions \(f(z)=\sum_{k=0}^{\infty}a_{k}z^{k}\), in the unit disk \(\mathbb{D}\). This is a natural generalization of the classical Hilbert operator. The action of the operators \(H_{\mu}\) on Hardy spaces has been recently studied (cf. [C. Chatzifountas et al., J. Math. Anal. Appl. 413, No. 1, 154–168 (2014; Zbl 1308.42021)]). This article is devoted to a study of the operators \(H_{\mu}\) acting on certain conformally invariant spaces of analytic functions on the disk such as the Bloch space, the space BMOA, the analytic Besov spaces, and the \(Q_{s}\)-spaces. Cited in 1 ReviewCited in 22 Documents MSC: 47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators 30H10 Hardy spaces Keywords:Hilbert operators; conformally invariant spaces; Carleson measures Citations:Zbl 1308.42021 PDFBibTeX XMLCite \textit{D. Girela} and \textit{N. Merchán}, Banach J. Math. Anal. 12, No. 2, 374--398 (2018; Zbl 1496.47054) Full Text: DOI arXiv Euclid References: [1] A. Aleman, A. Montes-Rodríguez, and A. Sarafoleanu, The eigenfunctions of the Hilbert matrix, Const. Approx. 36 (2012), no. 3, 353-374. · Zbl 1268.47040 [2] A. Aleman and A. G. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (1997), no. 2, 337-356. · Zbl 0951.47039 [3] J. M. Anderson, J. G. Clunie, and C. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37. · Zbl 0292.30030 [4] J. M. Anderson and A. L. Shields, Coefficient multipliers of Bloch functions, Trans. Amer. Math. Soc. 224 (1976), no. 2, 255-265. · Zbl 0352.30032 · doi:10.1090/S0002-9947-1976-0419769-6 [5] J. Arazy, S. D. Fisher, and J. Peetre, Möbius invariant function spaces, J. Reine Angew. Math. 363 (1985), 110-145. · Zbl 0566.30042 [6] R. Aulaskari and P. Lappan, “Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal” in Complex Analysis and Its Applications (Hong Kong, 1993), Pitman Res. Notes Math. Ser. 305, Longman Sci. Tech., Harlow, 1994, 136-146. · Zbl 0826.30027 [7] R. Aulaskari, P. Lappan, J. Xiao, and R. Zhao, On \(α\)-Bloch spaces and multipliers on Dirichlet spaces, J. Math. Anal. Appl. 209 (1997), no. 1, 103-121. · Zbl 0892.30030 · doi:10.1006/jmaa.1997.5345 [8] R. Aulaskari, J. Xiao, and R. Zhao, On subspaces and subsets of BMOA and UBC, Analysis 15 (1995), no. 2, 101-121. · Zbl 0835.30027 · doi:10.1524/anly.1995.15.2.101 [9] A. Baernstein, “Analytic functions of bounded mean oscillation” in Aspects of Contemporary Complex Analysis (Durham, 1979), edited by D. A. Brannan and J. G. Clunie, Academic Press, London, 1980, 3-36. · Zbl 0492.30026 [10] G. Bao and H. Wulan, Hankel matrices acting on Dirichlet spaces, J. Math. Anal. Appl. 409 (2014), no. 1, 228-235. · Zbl 1326.47028 · doi:10.1016/j.jmaa.2013.07.006 [11] L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547-559. · Zbl 0112.29702 · doi:10.2307/1970375 [12] Ch. Chatzifountas, D. Girela, and J. Á. Peláez, A generalized Hilbert matrix acting on Hardy spaces, J. Math. Anal. Appl. 413 (2014), no. 1, 154-168. · Zbl 1308.42021 [13] E. Diamantopoulos, Hilbert matrix on Bergman spaces, Illinois J. Math. 48 (2004), no. 3, 1067-1078. · Zbl 1080.47031 [14] E. Diamantopoulos and A. G. Siskakis, Composition operators and the Hilbert matrix, Studia Math. 140 (2000), no. 2, 191-198. · Zbl 0980.47029 · doi:10.4064/sm-140-2-191-198 [15] J. J. Donaire, D. Girela, and D. Vukotić, On univalent functions in some Möbius invariant spaces, J. Reine Angew. Math. 553 (2002), 43-72. · Zbl 1006.30031 [16] M. Dostanić, M. Jevtić, and D. Vukotić, Norm of the Hilbert matrix on Bergman and Hardy spaces and a theorem of Nehari type, J. Funct. Anal. 254 (2008), no. 11, 2800-2815. · Zbl 1149.47017 [17] P. L. Duren, Extension of a theorem of Carleson, Bull. Amer. Math. Soc. (N.S.) 75 (1969), 143-146. · Zbl 0184.30503 · doi:10.1090/S0002-9904-1969-12181-6 [18] P. L. Duren, Theory of \(H^p\) Spaces, Pure Appl. Math. 38, Academic Press, New York, 1970. · Zbl 0215.20203 [19] P. Galanopoulos, D. Girela, J. A. Peláez, and A. G. Siskakis, Generalized Hilbert operators, Ann. Acad. Sci. Fenn. Math. 39 (2014), no. 1, 231-258. · Zbl 1297.47030 [20] P. Galanopoulos and J. A. Peláez, A Hankel matrix acting on Hardy and Bergman spaces, Studia Math. 200, 3, (2010), no. 3, 201-220. · Zbl 1206.47024 · doi:10.4064/sm200-3-1 [21] D. Girela, “Analytic functions of bounded mean oscillation” in Complex Function Spaces (Mekrijärvi 1999), Univ. Joensuu Dept. Math. Rep. Ser. 4, Univ. Joensuu, Joensuu, 2001, 61-170. · Zbl 0981.30026 [22] G. H. Hardy and J. E. Littlewood, Notes on the theory of series XIII: Some new properties of Fourier constants, J. London. Math. Soc. S1-6, (1931), no. 1, 3-9. · Zbl 0001.13504 · doi:10.1112/jlms/s1-6.1.3 [23] F. Holland and D. Walsh, Growth estimates for functions in the Besov spaces \(A_p\), Proc. Roy. Irish Acad. Sect. A 88 (1988), no. 1, 1-18. · Zbl 0629.30036 [24] B. Lanucha, M. Nowak, and M. Pavlović, Hilbert matrix operator on spaces of analytic functions, Ann. Acad. Sci. Fenn. Math. 37 (2012), no. 1, 161-174. · Zbl 1258.47047 · doi:10.5186/aasfm.2012.3715 [25] M. Mateljević and M. Pavlović, \(L^p\)-behaviour of the integral means of analytic functions, Studia Math. 77 (1984), no. 3, 219-237. · Zbl 1188.30004 [26] M. Pavlović, Introduction to Function Spaces on the Disk, Posebna Izdan. 20, Matematički Institut SANU, Belgrade, 2004. · Zbl 1107.30001 [27] M. Pavlović, Analytic functions with decreasing coefficients and Hardy and Bloch spaces, Proc. Edinb. Math. Soc. (2) 56 (2013), no. 2, 623-635. · Zbl 1327.30062 · doi:10.1017/S001309151200003X [28] M. Pavlović, Invariant Besov spaces: Taylor coefficients and applications, preprint, http://www.researchgate.net/publication/304781567 (accessed 25July 2017). [29] J. A. Peláez and J. Rättyä, Weighted Bergman spaces induced by rapidly increasing weights, Mem. Amer. Math. Soc. 227 (2014), no. 1066. · Zbl 1308.30001 [30] L. E. Rubel and R. M. Timoney, An extremal property of the Bloch space, Proc. Amer. Math. Soc. 75 (1979), no. 1, 45-49. · Zbl 0405.46020 · doi:10.1090/S0002-9939-1979-0529210-9 [31] J. Xiao, Holomorphic \(Q\) classes, Lecture Notes in Math. 1767, Springer, Berlin, 2001. · Zbl 0983.30001 [32] R. Zhao, On logarithmic Carleson measures, Acta Sci. Math. (Szeged) 69 (2003), no. 3-4, 605-618. · Zbl 1050.30024 [33] K. Zhu, Analytic Besov spaces, J. Math. Anal. Appl. 157 (1991), no. 2, 318-336. · Zbl 0733.30026 · doi:10.1016/0022-247X(91)90091-D [34] K. Zhu, Operator Theory in Function Spaces, 2nd ed., Math. Surveys Monogr. 138, Amer. Math. Soc. Providence, 2007. · Zbl 1123.47001 [35] A. Zygmund, Trigonometric Series, Vols. I and II, 2nd ed., Cambridge Univ. Press, New York, 1959. · Zbl 0085.05601 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.