Yousefi, Hassan Completely rank-nonincreasing multilinear maps. (English) Zbl 1496.47087 Banach J. Math. Anal. 12, No. 2, 481-496 (2018). Summary: We extend the notion of completely rank-nonincreasing (CRNI) linear maps to include the multilinear maps. We show that a bilinear map on a finite-dimensional vector space on any field is CRNI if and only if it is a skew-compression bilinear map. We also characterize CRNI continuous bilinear maps defined on the set of compact operators. MSC: 47H60 Multilinear and polynomial operators Keywords:rank nonincreasing; completely rank nonincreasing; multilinear maps; bilinear maps PDFBibTeX XMLCite \textit{H. Yousefi}, Banach J. Math. Anal. 12, No. 2, 481--496 (2018; Zbl 1496.47087) Full Text: DOI Euclid References: [1] W. Arveson, Notes on extensions of C∗-algebras, Duke Math. J. 44 (1977), no. 2, 329-355. · Zbl 0368.46052 · doi:10.1215/S0012-7094-77-04414-3 [2] E. Christensen and A. M. Sinclair, Representations of completely bounded multilinear operators, J. Funct. Anal. 72 (1987), no. 1, 151-181. · Zbl 0622.46040 · doi:10.1016/0022-1236(87)90084-X [3] E. Christensen and A. M. Sinclair, A survey of completely bounded operators, Bull. Lond. Math. Soc. 21 (1989), no. 5, 417-448. · Zbl 0698.46044 · doi:10.1112/blms/21.5.417 [4] D. W. Hadwin, Nonseparable approximate equivalence, Trans. Amer. Math. Soc. 266 (1981), no. 1, 203-231. · Zbl 0462.46039 · doi:10.1090/S0002-9947-1981-0613792-6 [5] D. W. Hadwin, Completely positive maps and approximate equivalence, Indiana Univ. Math. J. 36 (1987), no. 1, 211-228. · Zbl 0649.46054 · doi:10.1512/iumj.1987.36.36011 [6] D. W. Hadwin, Approximately hyperreflexive algebras, J. Operator Theory 28 (1992), no. 1, 51-64. · Zbl 0819.47056 [7] D. W. Hadwin, J. Hou, and H. Yousefi, Completely rank-nonincreasing linear maps on spaces of operators, Linear Algebra Appl. 383 (2004), 213-232. · Zbl 1069.47039 · doi:10.1016/j.laa.2004.01.002 [8] D. W. Hadwin and D. R. Larson, “Strong limits of similarities” in Nonselfadjoint Operator Algebras, Operator Theory, and Related Topics, Oper. Theory Adv. Appl. 104, Birkhäuser, Basel, 1998, 139-146. · Zbl 0913.47018 [9] D. W. Hadwin and D. R. Larson, Completely rank-nonincreasing linear maps, J. Funct. Anal. 199 (2003), no. 1, 210-227. · Zbl 1026.46043 · doi:10.1016/S0022-1236(02)00091-5 [10] J. Hou, Rank-preserving linear maps on B(X), Sci. China Ser. A 32 (1989), no. 8, 929-940. · Zbl 0686.47030 [11] J. Hou and J. Cui, Completely rank nonincreasing linear maps on nest algebras, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1419-1428. · Zbl 1058.47031 · doi:10.1090/S0002-9939-03-07275-7 [12] V. I. Paulsen, Completely Bounded Maps and Dilations, Pitman Res. Notes Math. Ser. 146, Wiley, New York, 1986. · Zbl 0614.47006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.