Nash equilibria of threshold type for two-player nonzero-sum games of stopping. (English) Zbl 1390.91038

Summary: This paper analyses two-player nonzero-sum games of optimal stopping on a class of linear regular diffusions with not nonsingular boundary behaviour (in the sense of K. Itô and H. P. McKean jun. [Diffusion processes and their sample paths. Berlin-Heidelberg-New York: Springer-Verlag (1974; Zbl 0285.60063), p. 108]. We provide sufficient conditions under which Nash equilibria are realised by each player stopping the diffusion at one of the two boundary points of an interval. The boundaries of this interval solve a system of algebraic equations. We also provide conditions sufficient for the uniqueness of the equilibrium in this class.


91A15 Stochastic games, stochastic differential games
60G40 Stopping times; optimal stopping problems; gambling theory
60J60 Diffusion processes
91A05 2-person games


Zbl 0285.60063
Full Text: DOI arXiv


[1] Alariot, M., Lepeltier, J. P. and Marchal, B. (1982). Jeux de Dynkin. In Proceedings of the 2 nd Bad Honnef Workshop on Stochastic Processes. Lecture Notes in Control and Inform. Sci. 23-32. Springer, Berlin.
[2] Alvarez, L. H. R. (2008). A class of solvable stopping games. Appl. Math. Optim.58 291-314. · Zbl 1170.91365
[3] Anderson, S. T., Friedman, D. and Oprea, R. (2010). Preemption games: Theory and experiment. Am. Econ. Rev.100 1778-1803.
[4] Attard, N. (2015). Non-Zero Sum Games of Optimal Stopping for Markov Processes. Probability and Statistics Research Reports No. 1, School of Mathematics, Univ. Manchester. · Zbl 1404.91020
[5] Attard, N. (2017). Nash equilibrium in nonzero-sum games of optimal stopping for Brownian motion. Adv. in Appl. Probab.49 430-445. · Zbl 1429.91079
[6] Bensoussan, A. and Friedman, A. (1977). Nonzero-sum stochastic differential games with stopping times and free boundary problems. Trans. Amer. Math. Soc.231 275-327. · Zbl 0368.93029
[7] Bismut, J.-M. (1977). Sur un problème de Dynkin. Z. Wahrsch. Verw. Gebiete 39 31-53. · Zbl 0336.60069
[8] Borodin, A. N. and Salminen, P. (2002). Handbook of Brownian Motion—Facts and Formulae, 2nd ed. Birkhäuser, Basel. · Zbl 1012.60003
[9] Cattiaux, P. and Lepeltier, J.-P. (1990). Existence of a quasi-Markov Nash equilibrium for nonzero sum Markov stopping games. Stoch. Stoch. Rep.30 85-103. · Zbl 0704.60040
[10] Cvitanić, J. and Karatzas, I. (1996). Backward stochastic differential equations with reflection and Dynkin games. Ann. Probab.24 2024-2056. · Zbl 0876.60031
[11] Dayanik, S. (2008). Optimal stopping of linear diffusions with random discounting. Math. Oper. Res.33 645-661. · Zbl 1213.60080
[12] Dayanik, S. and Karatzas, I. (2003). On the optimal stopping problem for one-dimensional diffusions. Stochastic Process. Appl.107 173-212. · Zbl 1075.60524
[13] De Angelis, T. and Ferrari, G. (2014). A stochastic partially reversible investment problem on a finite time-horizon: Free-boundary analysis. Stochastic Process. Appl.124 4080-4119. · Zbl 1295.93073
[14] Dieudonné, J. (1969). Foundations of Modern Analysis. Academic Press, New York. · Zbl 0176.00502
[15] Dynkin, E. B. (1969). Game variant of a problem on optimal stopping. Sov. Math., Dokl.10 270-274. · Zbl 0186.25304
[16] Dynkin, E. B. and Yushkevich, A. A. (1969). Markov Processes: Theorems and Problems. Plenum Press, New York. · Zbl 0073.34801
[17] Ekström, E. and Villeneuve, S. (2006). On the value of optimal stopping games. Ann. Appl. Probab.16 1576-1596. · Zbl 1173.91309
[18] Etorneau, E. (1986). Résolution d’un Problème de Jeu de Somme Non Nulle sur les Temps d’Arrêt, Thèse de 3-ième cycle, Univ. Paris 6.
[19] Fudenberg, D. and Tirole, J. (1985). Preemption and rent equalization in the adoption of new technology. Rev. Econ. Stud.52 383-401. · Zbl 0566.90014
[20] Hamadène, S. and Hassani, M. (2014). The multiplayer nonzero-sum Dynkin game in continuous time. SIAM J. Control Optim.52 821-835. · Zbl 1303.91037
[21] Hamadène, S. and Zhang, J. (2009/2010). The continuous time nonzero-sum Dynkin game problem and application in game options. SIAM J. Control Optim.48 3659-3669. · Zbl 1202.91020
[22] Itô, K. and McKean, H. P. Jr. (1974). Diffusion Processes and Their Sample Paths. Springer, Berlin. · Zbl 0285.60063
[23] Jeanblanc, M., Yor, M. and Chesney, M. (2009). Mathematical Methods for Financial Markets. Springer, London. · Zbl 1205.91003
[24] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Graduate Texts in Mathematics 113. Springer, New York. · Zbl 0734.60060
[25] Kifer, Y. (2000). Game options. Finance Stoch.4 443-463. · Zbl 1066.91042
[26] Kyprianou, A. E. (2004). Some calculations for Israeli options. Finance Stoch.8 73-86. · Zbl 1098.91055 · doi:10.1007/s00780-003-0104-5
[27] Laraki, R. and Solan, E. (2005). The value of zero-sum stopping games in continuous time. SIAM J. Control Optim.43 1913-1922. · Zbl 1116.91030
[28] Laraki, R. and Solan, E. (2013). Equilibrium in two-player non-zero-sum Dynkin games in continuous time. Stochastics 85 997-1014. · Zbl 1284.91040
[29] Mamer, J. W. (1987). Monotone stopping games. J. Appl. Probab.24 386-401. · Zbl 0617.90092
[30] Moriarty, J. and Palczewski, J. (2017). Real option valuation for reserve capacity. European J. Oper. Res.257 251-260. · Zbl 1395.91462
[31] Morimoto, H. (1986). Non-zero-sum discrete parameter stochastic games with stopping times. Probab. Theory Related Fields 72 155-160. · Zbl 0595.60052 · doi:10.1007/BF00343901
[32] Murto, P. (2004). Exit in duopoly under uncertainty. RAND J. Econ.35 111-127.
[33] Nagai, H. (1987). Non-zero-sum stopping games of symmetric Markov processes. Probab. Theory Related Fields 75 487-497. · Zbl 0608.60067
[34] Ohtsubo, Y. (1987). A nonzero-sum extension of Dynkin’s stopping problem. Math. Oper. Res.12 277-296. · Zbl 0617.90102
[35] Ohtsubo, Y. (1991). On a discrete-time non-zero-sum Dynkin problem with monotonicity. J. Appl. Probab.28 466-472. · Zbl 0742.60044
[36] Peskir, G. (2008). Optimal stopping games and Nash equilibrium. Theory Probab. Appl.53 558-571. · Zbl 1209.91052
[37] Pham, H. (2009). Continuous-Time Stochastic Control and Optimization with Financial Applications. Stochastic Modelling and Applied Probability 61. Springer, Berlin.
[38] Riedel, F. and Steg, J. H. (2014). Subgame-perfect equilibria in stochastic timing games. Journal of Mathematical Economics 72 36-50. · Zbl 1394.91069
[39] Shmaya, E. and Solan, E. (2004). Two-player nonzero-sum stopping games in discrete time. Ann. Probab.32 2733-2764. · Zbl 1079.60045
[40] Sîrbu, M. and Shreve, S. E. (2006). A two-person game for pricing convertible bonds. SIAM J. Control Optim.45 1508-1539. · Zbl 1141.91309
[41] Steg, J.-H. (2016). Preemptive investment under uncertainty. Preprint. Available at arXiv:1511.03863.
[42] Touzi, N. and Vieille, N. (2002). Continuous-time Dynkin games with mixed strategies. SIAM J. Control Optim.41 1073-1088. · Zbl 1020.60028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.