×

Local inhomogeneous circular law. (English) Zbl 1388.60019

Summary: We consider large random matrices \(X\) with centered, independent entries, which have comparable but not necessarily identical variances. Girko’s circular law asserts that the spectrum is supported in a disk and in case of identical variances, the limiting density is uniform. In this special case, the local circular law by P. Bourgade et al. [Probab. Theory Relat. Fields 159, No. 3–4, 545–595 (2014; Zbl 1301.15021); ibid. 159, No. 3–4, 619–660 (2014; Zbl 1342.15028)] shows that the empirical density converges even locally on scales slightly above the typical eigenvalue spacing. In the general case, the limiting density is typically inhomogeneous and it is obtained via solving a system of deterministic equations. Our main result is the local inhomogeneous circular law in the bulk spectrum on the optimal scale for a general variance profile of the entries of \(X\).

MSC:

60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Ajanki, O., Erdős, L. and Krüger, T. (2016). Universality for general Wigner-type matrices. Probab. Theory Related Fields. To appear. DOI:10.1007/s00440-016-0740-2.
[2] Ajanki, O., Erdős, L. and Krüger, T. (2015). Quadratic vector equations on complex upper half-plane. Available at arXiv:1506.05095v4.
[3] Ajanki, O., Erdős, L. and Krüger, T. (2016). Stability of the matrix Dyson equation and random matrices with correlations. Available at arXiv:1604.08188.
[4] Ajanki, O., Erdős, L. and Krüger, T. (2017). Singularities of solutions to quadratic vector equations on the complex upper half-plane. Comm. Pure Appl. Math.70 1672-1705. · Zbl 1419.15014
[5] Aljadeff, J., Renfrew, D. and Stern, M. (2015). Eigenvalues of block structured asymmetric random matrices. J. Math. Phys.56 103502. · Zbl 1327.15073
[6] Aljadeff, J., Stern, M. and Sharpee, T. (2015). Transition to chaos in random networks with cell-type-specific connectivity. Phys. Rev. Lett.114 088101.
[7] Alt, J., Erdős, L. and Krüger, T. (2017). Local law for random Gram matrices. Electron. J. Probab.22 paper no. 25, 41 pp.
[8] Alt, J., Erdős, L. Krüger, T. and Nemish, Y. (2017). Location of the spectrum of Kronecker random matrices. Available at arXiv:1706.08343.
[9] Bai, Z. D. (1997). Circular law. Ann. Probab.25 494-529. · Zbl 0871.62018
[10] Bao, Z., Erdős, L. and Schnelli, K. (2016). Local single ring theorem on optimal scale. Available at arXiv:1612.05920. · Zbl 1357.46058
[11] Bordenave, C. and Chafaï, D. (2012). Around the circular law. Probab. Surv.9 1-89. · Zbl 1243.15022
[12] Bourgade, P., Yau, H.-T. and Yin, J. (2014). Local circular law for random matrices. Probab. Theory Related Fields 159 545-595. · Zbl 1301.15021
[13] Bourgade, P., Yau, H.-T. and Yin, J. (2014). The local circular law II: The edge case. Probab. Theory Related Fields 159 619-660. · Zbl 1342.15028
[14] Cook, N., Hachem, W., Najim, J. and Renfrew, D. (2016). Limiting spectral distribution for non-Hermitian random matrices with a variance profile. Available at arXiv:1612.04428. · Zbl 1401.60008
[15] Cook, N. A. (2016). Lower bounds for the smallest singular value of structured random matrices. Available at arXiv:1608.07347v3.
[16] Erdős, L. and Yau, H.-T. (2012). Universality of local spectral statistics of random matrices. Bull. Amer. Math. Soc. (N.S.) 49 377-414. · Zbl 1263.15032
[17] Erdős, L., Yau, H.-T. and Yin, J. (2011). Universality for generalized Wigner matrices with Bernoulli distribution. J. Comb.2 15-81. · Zbl 1235.15029
[18] Erdős, L., Yau, H.-T. and Yin, J. (2012). Bulk universality for generalized Wigner matrices. Probab. Theory Related Fields 154 341-407. · Zbl 1277.15026
[19] Fey, A., van der Hofstad, R. and Klok, M. J. (2008). Large deviations for eigenvalues of sample covariance matrices, with applications to mobile communication systems. Adv. in Appl. Probab.40 1048-1071. · Zbl 1255.60039
[20] Girko, V. L. (1984). The circular law. Teor. Veroyatn. Primen.29 669-679. · Zbl 0565.60034
[21] Girko, V. L. (2001). Theory of Stochastic Canonical Equations: Vol. I and II. Mathematics and Its Applications 535. Kluwer Academic, Dordrecht. · Zbl 0996.60002
[22] Götze, F. and Tikhomirov, A. (2010). The circular law for random matrices. Ann. Probab.38 1444-1491. · Zbl 1203.60010
[23] Guionnet, A., Krishnapur, M. and Zeitouni, O. (2011). The single ring theorem. Ann. of Math. (2) 174 1189-1217. · Zbl 1239.15018
[24] Helton, J. W., Rashidi Far, R. and Speicher, R. (2007). Operator-valued semicircular elements: Solving a quadratic matrix equation with positivity constraints. Int. Math. Res. Not. IMRN 2007. · Zbl 1139.15006
[25] May, R. M. (1972). Will a large complex system be stable? Nature 238 413-414.
[26] Pan, G. and Zhou, W. (2010). Circular law, extreme singular values and potential theory. J. Multivariate Anal.101 645-656. · Zbl 1203.60011
[27] Rudelson, M. and Vershynin, R. (2015). Delocalization of eigenvectors of random matrices with independent entries. Duke Math. J.164 2507-2538. · Zbl 1352.60007
[28] Sompolinsky, H., Crisanti, A. and Sommers, H.-J. (1988). Chaos in random neural networks. Phys. Rev. Lett.61 259-262.
[29] Tao, T. and Vu, V. (2008). Random matrices: The circular law. Commun. Contemp. Math.10 261-307. · Zbl 1156.15010
[30] Tao, T. and Vu, V. (2010). Random matrices: Universality of ESDs and the circular law. Ann. Probab.38 2023-2065. · Zbl 1203.15025
[31] Tao, T. and Vu, V. (2015). Random matrices: Universality of local spectral statistics of non-Hermitian matrices. Ann. Probab.43 782-874. · Zbl 1316.15042
[32] Xi, H., Yang, F. and Yin, J. (2017). Local circular law for the product of a deterministic matrix with a random matrix. Electron. J. Probab.22 paper no. 60, 77 pp. · Zbl 1373.15058
[33] Yin, J. (2014). The local circular law III: General case. Probab. Theory Related Fields 160 679-732. · Zbl 1342.15031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.