Menning, Melissa C.; Şega, Liana M. Cohomology of finite modules over short Gorenstein rings. (English) Zbl 1436.13031 J. Commut. Algebra 10, No. 1, 63-81 (2018). Let \((R,\mathfrak{m},k)\) be a Gorenstein local ring with \(\mathfrak{m}^3=0\neq\mathfrak{m}^2\) and \(e=\mathrm{rank}_k(\mathfrak{m}/\mathfrak{m}^2)\). In the present paper, as mentioned in the abstract, the authors shows that if \(e>2\) and \(M, N\) are finitely generated \(R\)-modules, then the power series \((1-et+t^2)\sum_{i=0}^{\infty}\mathrm{rank}_k \left(\mathrm{Ext}_R^i(M,N)\otimes_Rk\right)t^i\) and \((1-et+t^2)\sum_{i=0}^{\infty}\mathrm{rank}_k \left(\mathrm{Tor}_i^R(M,N)\otimes_Rk\right)t^i\) belong to \(\mathbb{Z}[t]\). Reviewer: Mohammad-Reza Doustimehr (Tabriz) MSC: 13D07 Homological functors on modules of commutative rings (Tor, Ext, etc.) 13D02 Syzygies, resolutions, complexes and commutative rings 13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) Keywords:Gorenstein ring; Koszul module; Poincaré series × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] L.L. Avramov and R.-O. Buchweitz, Support varieties and cohomology over complete intersections, Invent. Math. 142 (2000), 285-318. · Zbl 0999.13008 · doi:10.1007/s002220000090 [2] L.L. Avramov, S.B. Iyengar and L.M. Şega, Free resolutions over short local rings, J. Lond. Math. Soc. 78 (2008), 459-476. · Zbl 1153.13011 [3] N. Bourbaki, Algèbre commutative, in Anneaux locaux réguliers complets, Masson, Paris, 1983. · Zbl 0579.13001 [4] T.H. Gulliksen, A change of ring theorem with applications to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167-183. · Zbl 0292.13009 [5] J. Herzog and S. Iyengar, Koszul modules, J. Pure Appl. Alg. 201 (2005), 154-188. · Zbl 1106.13011 [6] J. Lescot, Asymptotic properties of Betti numbers of modules over certain rings, J. Pure Appl. Alg. 38 (1985), 287-298. · Zbl 0602.13004 · doi:10.1016/0022-4049(85)90016-7 [7] C. Löfwall, The Poincaré series for a class of local rings, Math. Instit., Stockholm University 8 (1975). [8] J.E. Roos, Homology of free loop spaces, cyclic homology and nonrational Poincaré-Betti series in commutative algebra, in Algebra, Some current trends, Lect. Notes Math. 1352, Springer, Berlin, 1988. · Zbl 0662.55004 [9] M.E. Rossi and L.M. Sega, Poincaré series of modules over compressed Gorenstein local rings, Adv. Math. 259 (2014), 421-447. · Zbl 1297.13016 [10] L.M. Şega, Vanishing of cohomology over Gorenstein rings of small codimension, Proc. Amer. Math. Soc. 131 (2003), 2313-2323. · Zbl 1017.13008 [11] G. Sjödin, The Poincaré series of modules over a local Gorenstein ring with \(\fm^3=0\), Math. Instit., Stockholm University 2 (1979). · Zbl 0426.13007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.