zbMATH — the first resource for mathematics

Six-dimensional adaptive simulation of the Vlasov equations using a hierarchical basis. (English) Zbl 1393.65009

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
85-08 Computational methods for problems pertaining to astronomy and astrophysics
35Q83 Vlasov equations
Full Text: DOI
[1] T. Abel, O. Hahn, and R. Kaehler, Tracing the dark matter sheet in phase space, MNRAS, 427 (2012), pp. 61–76.
[2] S. von Alfthan, D. Pokhotelov, Y. Kempf, S. Hoilijoki, I. Honkonen, A. Sandroos, and M. Palmroth, Vlasiator: First global hybrid-Vlasov simulations of Earth’s foreshock and magnetosheath, J. Atmospheric Solar-Terrestrial Phys., 120 (2014), pp. 24–35.
[3] V. A. Antonov, Solution to the problem concerning the stability of a stellar system with Emden’s density law and with a spherical velocity distribution, Leningrad Univ. Bull., 19 (1962), pp. 96–111.
[4] T. D. Arber and R. G. L. Vann, A critical comparison of Eulerian-grid-based Vlasov solvers, J. Comput. Phys., 180 (2002), pp. 339–357. · Zbl 1001.82105
[5] R. R. Arslanbekov, V. Kolobov, and A. Frolova, Kinetic solvers with adaptive mesh in phase space, Phys. Rev. E, 88 (2013), 063301.
[6] N. Besse, E. Deriaz, and E. Madaule, Adaptive multiresolution semi-Lagrangian discontinuous Galerkin methods for the Vlasov equations, J. Comput. Phys., 332 (2017), pp. 376–417. . · Zbl 1380.65249
[7] N. Besse, G. Latu, A. Ghizzo, E. Sonnendrücker, and P. Bertrand, A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov–Maxwell system, J. Comput. Phys., 227 (2008), pp. 7889–7916. · Zbl 1194.83013
[8] J. Binney and S. Tremaine, Galactic Dynamics, 2nd ed., Princeton Ser. Astrophys. 1987, Princeton University Press, Princeton, NJ, 2011.
[9] C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, Taylor & Francis, London, 1991.
[10] O. Bokanowski, J. Garcke, M. Griebel, and I. Klompmaker, An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations, J. Sci. Comput., 55 (2013), pp. 575–605. · Zbl 1269.65076
[11] K. Brix, S. Melian, S. Müller, and M. Bachmann, Adaptive multi-resolution methods: Practical issues on data structures, implementation and parallelization, V. Louvet and M. Massot, eds., ESAIM Proc., 34 (2011), pp. 151–183. · Zbl 1302.65219
[12] S. Brull and L. Mieussens, Local discrete velocity grids for deterministic rarefied flow simulations , J. Comput. Phys., 266 (2014), pp. 22–46. · Zbl 1362.76054
[13] S. Brull, L. Forestier-Coste, and L. Mieussens, Two dimensional local adaptive discrete velocity grids for rarefied flow simulations, AIP Conf. Proc. 1786, American Institute of Physics, Melville, NY, 2016, 180002.
[14] J. Büchner, Vlasov-code simulation, in Proceedings of ISSS-7, 2005.
[15] C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33 (2011), pp. 1103–1133. · Zbl 1230.65106
[16] A. J. Christlieb, Y. Liu, Q. Tang, and Z. Xu, Positivity-preserving finite difference weighted ENO schemes with constrained transport for ideal magnetohydrodynamic equations, SIAM J. Sci. Comput., 37 (2015), pp. A1825–A1845. · Zbl 1329.76225
[17] A. Cohen, R. DeVore, G. Kerkyacharian, and D. Picard, Maximal spaces with given rate of convergence for thresholding algorithms, Appl. Comput. Harmon. Anal., 11 (2001), pp. 167–191. · Zbl 0997.62025
[18] S. Colombi, T. Sousbie, S. Peirani, G. Plum, and Y. Suto, Vlasov versus N-body: The Hénon sphere, Monthly Not. Roy. Astronomical Soc., 450 (2015), pp. 3724–3741.
[19] G.-H. Cottet and P.-A. Raviart, Particle methods for the one-dimensional Vlasov–Poisson equations, SIAM J. Numer. Anal., 21 (1984), pp. 52–76. · Zbl 0549.65084
[20] R. Courant, K. Friedrichs, and H. Lewy, On the partial difference equations of mathematical physics, IBM J. Res. Development, (1967), pp. 215–234. · Zbl 0145.40402
[21] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math. 61, SIAM, Philadelphia, 1992.
[22] P. Degond, F. Deluzet, L. Navoret, A.-B. Sun, and M.-H. Vignal, Asymptotic-preserving particle-in-cell method for the Vlasov–Poisson system near quasineutrality, J. Comput. Phys., 229 (2010), pp. 5630–5652. · Zbl 1346.82034
[23] D. Del Sarto and E. Deriaz, A multigrid AMR algorithm for the study of magnetic reconnection, J. Comput. Phys., 351 (2017), . · Zbl 1375.76122
[24] S. Delage Santacreu, Méthode de raffinement adaptatif hybride pour le suivi de fronts dans des écoulements incompressibles, Thèse de Mécanique de l’Univérsité Bordeaux I, 2006.
[25] E. Deriaz, Stability conditions for the numerical solution of convection-dominated problems with skew-symmetric discretizations, SIAM J. Numer. Anal., 50 (2012), pp. 1058–1085. · Zbl 1252.65155
[26] E. Deriaz and V. Perrier, Direct numerical simulation of turbulence using divergence-free wavelets, SIAM Multiscale Model. Simul., 7 (2008), pp. 1101–1129. · Zbl 1400.76033
[27] G. Deslauriers and S. Dubuc, Symmetric iterative interpolation processes, Constr. Approx., 5 (1989), pp. 49–68. · Zbl 0659.65004
[28] R. A. DeVore, S. V. Konyagin, and V. N. Temlyakov, Hyperbolic wavelet approximation, Constr. Approx., 14 (1998), pp. 1–26. · Zbl 0895.41016
[29] D. L. Donoho, Interpolating Wavelet Transforms, Technical report, Stanford University, 1992.
[30] M. Dumbser, V. A. Titarev, and S. V. Utyuzhnikov, Implicit multiblock method for solving a kinetic equation on unstructured meshes, Comput. Math. Math. Phys., 53 (2013), pp. 601–615 . · Zbl 1299.76222
[31] B. Eliasson, Numerical simulations of the Fourier-transformed Vlasov-Maxwell system in higher dimensions—Theory and applications, J. Transport Theory Statist. Phys., 39 (2010), pp. 387–465. · Zbl 1219.82138
[32] E. Fijalkow, Behaviour of phase-space holes in \(2\)D simulations, J. Plasma Phys., 61 (1999), pp. 65–76.
[33] F. Filbet, E. Sonnendrücker, and P. Bertrand, Conservative numerical schemes for the Vlasov equation, J. Comput. Phys., 172 (2001), pp. 166–187. · Zbl 0998.65138
[34] F. Filbet and E. Sonnendrücker, Comparison of Eulerian Vlasov solvers, Comput. Phys. Commun., 150 (2003), pp. 247–266. · Zbl 1196.82108
[35] T. Fujiwara, Integration of the collisionless Boltzmann equation for spherical stellar systems, Publ. Astron. Soc. Japan, 35 (1983), pp. 547–558.
[36] M. Grandin, Data structures and algorithms for high-dimensional structured adaptive mesh refinement, Adv. Engineering Software, 82 (2015), pp. 75–86.
[37] W. Guo and Y. Cheng, A sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulations, SIAM J. Sci. Comput., 38 (2016), pp. A3381–A3409.
[38] E. Hairer, S. P. Nø rsett, and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, Springer Ser. Comput. Math. 8, Springer-Verlag, Berlin, 1987. · Zbl 0638.65058
[39] V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, and J. Vaclavik, L. Villard, A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation, J. Comput. Phys., 217 (2006), pp. 395–423. · Zbl 1160.76385
[40] A. Harten, Multi-resolution algorithms for the numerical solution of hyperbolic conservation laws, Comm. Pure Appl. Math., 48 (1995), pp. 1305–1342. · Zbl 0860.65078
[41] F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), pp. 251–265. · Zbl 1266.68090
[42] J. A. F. Hittinger and J. W. Banks, Block-structured adaptive mesh refinement algorithms for Vlasov simulation, J. Comput. Phys., 241 (2013), pp. 118–140. · Zbl 1349.76339
[43] O. Hoenen and E. Violard, Load-balancing for a block-based parallel adaptive 4D Vlasov solver, in Proceedings of the 14th International Euro-Par Conference, 2008.
[44] M. Holmström, Solving hyperbolic PDEs using interpolating wavelets, SIAM J. Sci. Comput., 21 (1999), pp. 405–420.
[45] N. K.-R. Kevlahan and O. V. Vasilyev, An adaptive wavelet collocation method for fluid-structure interaction, SIAM J. Sci. Comput., 26 (2005), pp. 1894–1915. · Zbl 1149.76632
[46] V. I. Kolobov and R. R. Arslanbekov, Towards adaptive kinetic-fluid simulations of weakly ionized plasmas, J. Comput. Phys., 231 (2012), pp. 839–869. · Zbl 1417.76030
[47] K. Kormann, A semi-Lagrangian Vlasov solver in tensor train format, SIAM J. Sci. Comput., 37 (2015), pp. B613–B632. · Zbl 1325.76132
[48] T. Nakamura and T. Yabe, Cubic interpolated propagation scheme for solving hyper-dimensional Vlasov-Poisson equation in phase space, Comput. Phys. Commun., 120 (1999), pp. 122–154. · Zbl 1001.82003
[49] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295–2317. · Zbl 1232.15018
[50] D. Pflüger, Spatially Adaptive Sparse Grids for High-Dimensional Problems, Ph.D. thesis, Technischen Universität München, 2010.
[51] N. Pham, P. Helluy, and L. Navoret, Hyperbolic approximation of the Fourier transformed Vlasov equation, ESAIM Proc., 45 (2014), pp. 379–389. · Zbl 1335.35252
[52] S. Popinet, Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys., 190 (2003), pp. 572–600. · Zbl 1076.76002
[53] O. Roussel, K. Schneider, A. Tsigulin, and H. Bockhorn, A conservative fully adaptive multi-resolution algorithm for parabolic PDEs, J. Comput. Phys., 188 (2003), pp. 493–523. · Zbl 1022.65093
[54] A. Sandroos, I. Honkonena, S. von Alfthan, and M. Palmroth, Multi-GPU simulations of Vlasov’s equation using Vlasiator, Parallel Comput., 39 (2013), pp. 306–318.
[55] K. Selim, A. Logg, and M. G. Larson, An adaptive finite element splitting method for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 209–212 (2011), pp. 54–65. · Zbl 1243.76021
[56] C. Shen, J.-M. Qiu, and A. Christlieb, Adaptive mesh refinement based on high order finite difference WENO scheme for multi-scale simulations, J. Comput. Phys., 230 (2011), pp. 3780–3802. · Zbl 1218.65085
[57] E. Sonnendrücker, J. Roche, P. Bertrand, and A. Ghizzo, The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Phys., 149 (1999), pp. 201–220. · Zbl 0934.76073
[58] W. F. Spotz and G. F. Carey, High-order compact finite difference methods, in Proceedings of ICOSAM’95, 1995, pp. 397–408. · Zbl 0836.76065
[59] V. Springel, The Cosmological Simulation Code, GADGET-2, MNRAS, 364 (2005), 1105.
[60] R. Teyssier, Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES, Astron. Astrophys., 385 (2002), pp. 337–364.
[61] K. Yoshikawa, N. Yoshida, and M. Umemura, Direct integration of the collisionless Boltzmann equation in six-dimensional phase space: Self-gravitating systems, Astrophys. J., 762 (2013), 116.
[62] O. Zanotti and M. Dumbser, A high order special relativistic hydrodynamic and magnetohydrodynamic code with space-time adaptive mesh refinement, Comput. Phys. Commun., 188 (2015), pp. 110–127. · Zbl 1344.76058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.