×

Non-perturbative test of the Witten-Veneziano formula from lattice QCD. (English) Zbl 1387.81047

Summary: We compute both sides of the Witten-Veneziano formula using lattice techniques. For the one side we perform dedicated quenched simulations and use the spectral projector method to determine the topological susceptibility in the pure Yang-Mills theory. The other side we determine in lattice QCD with \(N_{\mathrm{ f}}=2+1+1\) dynamical Wilson twisted mass fermions including for the first time also the flavour singlet decay constant. The Witten-Veneziano formula represents a leading order expression in the framework of chiral perturbation theory and we also employ leading order chiral perturbation theory to relate the flavor singlet decay constant to the relevant decay constant parameters in the quark flavor basis and flavor non-singlet decay constants. After taking the continuum and the \(\mathrm{SU}(2)\) chiral limits we compare both sides and find good agreement within uncertainties.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations

Software:

Lemon; R; tmLQCD
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Witten, E., Current algebra theorems for the U(1) Goldstone boson, Nucl. Phys., B 156, 269, (1979)
[2] Veneziano, G., U(1) without instantons, Nucl. Phys., B 159, 213, (1979)
[3] G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys.B 72 (1974) 461 [INSPIRE].
[4] Veneziano, G., Goldstone mechanism from gluon dynamics, Phys. Lett., B 95, 90, (1980)
[5] Giusti, L.; Rossi, GC; Testa, M.; Veneziano, G., The U_{A}(1) problem on the lattice with Ginsparg-Wilson fermions, Nucl. Phys., B 628, 234, (2002) · Zbl 0992.81089
[6] Giusti, L.; Rossi, GC; Testa, M.; Veneziano, G., The U_{A}(1) problem on the lattice, Nucl. Phys. Proc. Suppl., 106, 1001, (2002)
[7] Vecchia, P.; Fabricius, K.; Rossi, GC; Veneziano, G., Preliminary evidence for U_{A}(1) breaking in QCD from lattice calculations, Nucl. Phys., B 192, 392, (1981)
[8] Vecchia, P.; Fabricius, K.; Rossi, GC; Veneziano, G., Numerical checks of the lattice definition independence of topological charge fluctuations, Phys. Lett., B 108, 323, (1982)
[9] Giacomo, A.; Panagopoulos, H.; Vicari, E., The topological susceptibility and lattice universality, Nucl. Phys., B 338, 294, (1990)
[10] Gasser, J.; Leutwyler, H., Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys., B 250, 465, (1985)
[11] R. Kaiser and H. Leutwyler, Pseudoscalar decay constants at large N_{\(c\)}, hep-ph/9806336 [INSPIRE]. · Zbl 0986.81512
[12] Feldmann, T., Quark structure of pseudoscalar mesons, Int. J. Mod. Phys., A 15, 159, (2000)
[13] Kaiser, R.; Leutwyler, H., Large-N_{c} in chiral perturbation theory, Eur. Phys. J., C 17, 623, (2000) · Zbl 1082.81520
[14] Giusti, L.; Lüscher, M., Chiral symmetry breaking and the banks-Casher relation in lattice QCD with Wilson quarks, JHEP, 03, 013, (2009)
[15] Baron, R.; etal., Light hadrons from lattice QCD with light (u, d), strange and charm dynamical quarks, JHEP, 06, 111, (2010) · Zbl 1288.81140
[16] European Twisted Mass collaboration, R. Baron et al., Computing K and D meson masses with N_{f} = 2 + 1 + 1 twisted mass lattice QCD, Comput. Phys. Commun.182 (2011) 299 [arXiv:1005.2042] [INSPIRE].
[17] ETM collaboration, R. Baron et al., Light Hadrons from N_{f} = 2 + 1 + 1 Dynamical Twisted Mass Fermions, PoS(LATTICE 2010)123 [INSPIRE].
[18] Shindler, A., Twisted mass lattice QCD, Phys. Rept., 461, 37, (2008)
[19] Alpha collaboration, R. Frezzotti, P.A. Grassi, S. Sint and P. Weisz, Lattice QCD with a chirally twisted mass term, JHEP08 (2001) 058 [hep-lat/0101001] [INSPIRE].
[20] Frezzotti, R.; Rossi, GC, Chirally improving Wilson fermions. 1. O(a) improvement, JHEP, 08, 007, (2004)
[21] Frezzotti, R.; Rossi, GC, Chirally improving Wilson fermions. II. four-quark operators, JHEP, 10, 070, (2004)
[22] Frezzotti, R.; Rossi, GC, Twisted mass lattice QCD with mass nondegenerate quarks, Nucl. Phys. Proc. Suppl., 128, 193, (2004)
[23] Iwasaki, Y., Renormalization group analysis of lattice theories and improved lattice action: two-dimensional nonlinear O(N) σ-model, Nucl. Phys., B 258, 141, (1985)
[24] Iwasaki, Y.; Kanaya, K.; Kaneko, T.; Yoshie, T., Scaling in SU(3) pure gauge theory with a renormalization group improved action, Phys. Rev., D 56, 151, (1997)
[25] European Twisted Mass collaboration, N. Carrasco et al., Up, down, strange and charm quark masses with N_{f} = 2 + 1 + 1 twisted mass lattice QCD, Nucl. Phys.B 887 (2014) 19 [arXiv:1403.4504] [INSPIRE].
[26] ETM collaboration, K. Ottnad et al., η and ηmesons from N_{f} = 2 + 1 + 1 twisted mass lattice QCD, JHEP11 (2012) 048 [arXiv:1206.6719] [INSPIRE].
[27] European Twisted Mass collaboration, C. Michael, K. Ottnad and C. Urbach, η and ηmasses and decay constants from lattice QCD with N_{f} = 2 + 1 + 1 quark flavours, PoS(LATTICE 2013)253 [arXiv:1311.5490] [INSPIRE].
[28] ETM collaboration, C. Michael, K. Ottnad and C. Urbach, η and ηmixing from Lattice QCD, Phys. Rev. Lett.111 (2013) 181602 [arXiv:1310.1207] [INSPIRE].
[29] Jansen, K.; Urbach, C., Tmlqcd: A program suite to simulate Wilson twisted mass lattice QCD, Comput. Phys. Commun., 180, 2717, (2009) · Zbl 1197.81172
[30] Lüscher, M.; Palombi, F., Universality of the topological susceptibility in the SU(3) gauge theory, JHEP, 09, 110, (2010) · Zbl 1291.81394
[31] ETM collaboration, K. Cichy, E. Garcia-Ramos and K. Jansen, Topological susceptibility from the twisted mass Dirac operator spectrum, JHEP02 (2014) 119 [arXiv:1312.5161] [INSPIRE].
[32] Cichy, K.; Garcia-Ramos, E.; Jansen, K., Chiral condensate from the twisted mass Dirac operator spectrum, JHEP, 10, 175, (2013)
[33] Alexandrou, C.; Constantinou, M.; Korzec, T.; Panagopoulos, H.; Stylianou, F., Renormalization constants of local operators for Wilson type improved fermions, Phys. Rev., D 86, 014505, (2012)
[34] Cichy, K.; Jansen, K.; Korcyl, P., Non-perturbative renormalization in coordinate space for N_{f} = 2 maximally twisted mass fermions with tree-level symanzik improved gauge action, Nucl. Phys., B 865, 268, (2012) · Zbl 1262.81192
[35] Cichy, K.; Garcia-Ramos, E.; Jansen, K., Short distance singularities and automatic O(a) improvement: the cases of the chiral condensate and the topological susceptibility, JHEP, 04, 048, (2015)
[36] K. Cichy, E. Garcia-Ramos, K. Jansen and A. Shindler, Topological susceptibility from twisted mass fermions using spectral projectors, PoS(LATTICE 2013)129 [arXiv:1312.3535] [INSPIRE].
[37] Debbio, L.; Giusti, L.; Pica, C., Topological susceptibility in the SU(3) gauge theory, Phys. Rev. Lett., 94, 032003, (2005)
[38] Dürr, S.; Fodor, Z.; Hölbling, C.; Kurth, T., Precision study of the SU(3) topological susceptibility in the continuum, JHEP, 04, 055, (2007)
[39] Lucini, B.; Teper, M., SU(N) gauge theories in four-dimensions: exploring the approach to N = ∞, JHEP, 06, 050, (2001) · Zbl 0972.81107
[40] Debbio, L.; Panagopoulos, H.; Vicari, E., Θ dependence of SU(N) gauge theories, JHEP, 08, 044, (2002) · Zbl 1226.81124
[41] Debbio, L.; Pica, C., Topological susceptibility from the overlap, JHEP, 02, 003, (2004)
[42] Giusti, L.; Lüscher, M.; Weisz, P.; Wittig, H., Lattice QCD in the ϵ-regime and random matrix theory, JHEP, 11, 023, (2003)
[43] Neff, H.; Eicker, N.; Lippert, T.; Negele, JW; Schilling, K., On the low fermionic eigenmode dominance in QCD on the lattice, Phys. Rev., D 64, 114509, (2001)
[44] ETM collaboration, P. Boucaud et al., Dynamical Twisted Mass Fermions with Light Quarks: Simulation and Analysis Details, Comput. Phys. Commun.179 (2008) 695 [arXiv:0803.0224] [INSPIRE].
[45] ETM collaboration, K. Jansen, C. Michael and C. Urbach, The ηmeson from lattice QCD, Eur. Phys. J.C 58 (2008) 261 [arXiv:0804.3871] [INSPIRE].
[46] Michael, C.; Teasdale, I., Extracting glueball masses from lattice QCD, Nucl. Phys., B 215, 433, (1983)
[47] Lüscher, M.; Wolff, U., How to calculate the elastic scattering matrix in two-dimensional quantum field theories by numerical simulation, Nucl. Phys., B 339, 222, (1990)
[48] Blossier, B.; Della Morte, M.; Hippel, G.; Mendes, T.; Sommer, R., On the generalized eigenvalue method for energies and matrix elements in lattice field theory, JHEP, 04, 094, (2009)
[49] Frezzotti, R.; Sint, S., Some remarks on O(a) improved twisted mass QCD, Nucl. Phys. Proc. Suppl., 106, 814, (2002)
[50] Della Morte, M.; Frezzotti, R.; Heitger, J., Quenched twisted mass QCD at small quark masses and in large volume, Nucl. Phys. Proc. Suppl., 106, 260, (2002)
[51] XLF collaboration, K. Jansen, A. Shindler, C. Urbach and I. Wetzorke, Scaling test for Wilson twisted mass QCD, Phys. Lett.B 586 (2004) 432 [hep-lat/0312013] [INSPIRE].
[52] Feldmann, T.; Kroll, P.; Stech, B., Mixing and decay constants of pseudoscalar mesons, Phys. Rev., D 58, 114006, (1998)
[53] Feldmann, T.; Kroll, P.; Stech, B., Mixing and decay constants of pseudoscalar mesons: the sequel, Phys. Lett., B 449, 339, (1999)
[54] K. Ottnad and C. Urbach, Decay constants of η, η-mesons from lattice qcd, in preparation. · Zbl 1331.81415
[55] XLF collaboration, K. Jansen, M. Papinutto, A. Shindler, C. Urbach and I. Wetzorke, Light quarks with twisted mass fermions, Phys. Lett.B 619 (2005) 184 [hep-lat/0503031] [INSPIRE].
[56] for the ETM collaboration, A. Deuzeman, S. Reker and C. Urbach, Lemon: an MPI parallel I/O library for data encapsulation using LIME, Comput. Phys. Commun.183 (2012) 1321 [arXiv:1106.4177] [INSPIRE].
[57] R Development Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria (2005) [ISBN: 3-900051-07-0].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.