×

zbMATH — the first resource for mathematics

A complete two-loop, five-gluon helicity amplitude in Yang-Mills theory. (English) Zbl 1388.81274
Summary: We compute the integrand of the full-colour, two-loop, five-gluon scattering amplitude in pure Yang-Mills theory with all helicities positive, using generalized unitarity cuts. Tree-level BCJ relations, satisfied by amplitudes appearing in the cuts, allow us to deduce all the necessary non-planar information for the full-colour amplitude from known planar data. We present our result in terms of irreducible numerators, with colour factors derived from the multi-peripheral colour decomposition. Finally, the leading soft divergences are checked to reproduce the expected infrared behaviour.

MSC:
81T13 Yang-Mills and other gauge theories in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Catani, S.; Cieri, L.; Florian, D.; Ferrera, G.; Grazzini, M., Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett., 108, 072001, (2012)
[2] Czakon, M.; Fiedler, P.; Mitov, A., Total top-quark pair-production cross section at hadron colliders through \( \mathcal{O}\left({α}_S^4\right) \), Phys. Rev. Lett., 110, 252004, (2013)
[3] Czakon, M.; Fiedler, P.; Mitov, A., Resolving the tevatron top quark forward-backward asymmetry puzzle: fully differential next-to-next-to-leading-order calculation, Phys. Rev. Lett., 115, 052001, (2015)
[4] Gehrmann, T.; etal., W \^{}{+}W \^{}{−} production at hadron colliders in next to next to leading order QCD, Phys. Rev. Lett., 113, 212001, (2014)
[5] Grazzini, M.; Kallweit, S.; Rathlev, D., W γ and Zγ production at the LHC in NNLO QCD, JHEP, 07, 085, (2015)
[6] Grazzini, M.; Kallweit, S.; Rathlev, D.; Torre, A., Zγ production at hadron colliders in NNLO QCD, Phys. Lett., B 731, 204, (2014)
[7] Cascioli, F.; etal., ZZ production at hadron colliders in NNLO QCD, Phys. Lett., B 735, 311, (2014)
[8] Boughezal, R.; Focke, C.; Liu, X.; Petriello, F., W -boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett., 115, 062002, (2015)
[9] Chen, X.; Gehrmann, T.; Glover, EWN; Jaquier, M., Precise QCD predictions for the production of Higgs + jet final states, Phys. Lett., B 740, 147, (2015)
[10] Boughezal, R.; Focke, C.; Giele, W.; Liu, X.; Petriello, F., Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett., B 748, 5, (2015)
[11] Boughezal, R.; Caola, F.; Melnikov, K.; Petriello, F.; Schulze, M., Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett., 115, 082003, (2015)
[12] E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Two loop QCD corrections to gluon-gluon scattering, Nucl. Phys.B 605 (2001) 467 [hep-ph/0102201] [INSPIRE].
[13] A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and T.A. Morgan, Precise QCD predictions for the production of a Z boson in association with a hadronic jet, arXiv:1507.02850 [INSPIRE].
[14] Anastasiou, C.; Duhr, C.; Dulat, F.; Herzog, F.; Mistlberger, B., Higgs boson gluon-fusion production in QCD at three loops, Phys. Rev. Lett., 114, 212001, (2015)
[15] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [INSPIRE]. · Zbl 1116.81067
[16] Cascioli, F.; Maierhofer, P.; Pozzorini, S., Scattering amplitudes with open loops, Phys. Rev. Lett., 108, 111601, (2012)
[17] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644
[18] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [INSPIRE]. · Zbl 1049.81644
[19] Britto, R.; Cachazo, F.; Feng, B., Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys., B 725, 275, (2005) · Zbl 1178.81202
[20] Giele, WT; Kunszt, Z.; Melnikov, K., Full one-loop amplitudes from tree amplitudes, JHEP, 04, 049, (2008) · Zbl 1246.81170
[21] Bern, Z.; etal., Next-to-leading order W + 5-jet production at the LHC, Phys. Rev., D 88, 014025, (2013)
[22] Badger, S.; Biedermann, B.; Uwer, P.; Yundin, V., Next-to-leading order QCD corrections to five jet production at the LHC, Phys. Rev., D 89, 034019, (2014)
[23] C. Anastasiou, E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Two-loop QCD corrections to massless identical quark scattering, Nucl. Phys.B 601 (2001) 341 [hep-ph/0011094] [INSPIRE].
[24] C. Anastasiou, E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Two-loop QCD corrections to the scattering of massless distinct quarks, Nucl. Phys.B 601 (2001) 318 [hep-ph/0010212] [INSPIRE].
[25] C. Anastasiou, E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Two-loop QCD corrections to massless quark gluon scattering, Nucl. Phys.B 605 (2001) 486 [hep-ph/0101304] [INSPIRE].
[26] L.W. Garland, T. Gehrmann, E.W.N. Glover, A. Koukoutsakis and E. Remiddi, Two-loop QCD helicity amplitudes for e\^{}{+}\(e\)\^{}{−} → 3 jets, Nucl. Phys.B 642 (2002) 227 [hep-ph/0206067] [INSPIRE].
[27] L.W. Garland, T. Gehrmann, E.W.N. Glover, A. Koukoutsakis and E. Remiddi, The two-loop QCD matrix element for e\^{}{+}\(e\)\^{}{−} → 3 jets, Nucl. Phys.B 627 (2002) 107 [hep-ph/0112081] [INSPIRE].
[28] Gehrmann, T.; Jaquier, M.; Glover, EWN; Koukoutsakis, A., Two-loop QCD corrections to the helicity amplitudes for H → 3 partons, JHEP, 02, 056, (2012) · Zbl 1309.81327
[29] T. Gehrmann, A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for\( q{\overline{q}}^{′}→ {V}_1{V}_2→ 4 \)leptons, arXiv:1503.04812 [INSPIRE]. · Zbl 1309.81273
[30] Manteuffel, A.; Tancredi, L., The two-loop helicity amplitudes for gg → V_{1}V_{2} → 4 leptons, JHEP, 06, 197, (2015)
[31] Caola, F.; Henn, JM; Melnikov, K.; Smirnov, AV; Smirnov, VA, Two-loop helicity amplitudes for the production of two off-shell electroweak bosons in gluon fusion, JHEP, 06, 129, (2015)
[32] Caola, F.; Henn, JM; Melnikov, K.; Smirnov, AV; Smirnov, VA, Two-loop helicity amplitudes for the production of two off-shell electroweak bosons in quark-antiquark collisions, JHEP, 11, 041, (2014)
[33] Chetyrkin, KG; Tkachov, FV, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys., B 192, 159, (1981)
[34] Tkachov, FV, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett., B 100, 65, (1981)
[35] Z. Bern, L.J. Dixon and D.A. Kosower, A two-loop four-gluon helicity amplitude in QCD, JHEP01 (2000) 027 [hep-ph/0001001] [INSPIRE].
[36] Z. Bern, A. De Freitas and L.J. Dixon, Two-loop amplitudes for gluon fusion into two photons, JHEP09 (2001) 037 [hep-ph/0109078] [INSPIRE].
[37] Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two-loop QCD amplitudes and coupling shifts, Phys. Rev.D 66 (2002) 085002 [hep-ph/0202271] [INSPIRE].
[38] Z. Bern, A. De Freitas and L.J. Dixon, Two-loop helicity amplitudes for gluon-gluon scattering in QCD and supersymmetric Yang-Mills theory, JHEP03 (2002) 018 [hep-ph/0201161] [INSPIRE].
[39] Z. Bern, A. De Freitas and L.J. Dixon, Two-loop helicity amplitudes for quark-gluon scattering in QCD and gluino-gluon scattering in supersymmetric Yang-Mills theory, JHEP06 (2003) 028 [Erratum ibid.04 (2014) 112] [hep-ph/0304168] [INSPIRE].
[40] A. De Freitas and Z. Bern, Two-loop helicity amplitudes for quark-quark scattering in QCD and gluino-gluino scattering in supersymmetric Yang-Mills theory, JHEP09 (2004) 039 [hep-ph/0409007] [INSPIRE].
[41] Kosower, DA; Larsen, KJ, Maximal unitarity at two loops, Phys. Rev., D 85, 045017, (2012)
[42] Forde, D., Direct extraction of one-loop integral coefficients, Phys. Rev., D 75, 125019, (2007)
[43] Caron-Huot, S.; Larsen, KJ, Uniqueness of two-loop master contours, JHEP, 10, 026, (2012)
[44] Johansson, H.; Kosower, DA; Larsen, KJ, Two-loop maximal unitarity with external masses, Phys. Rev., D 87, 025030, (2013)
[45] Johansson, H.; Kosower, DA; Larsen, KJ, Maximal unitarity for the four-mass double box, Phys. Rev., D 89, 125010, (2014)
[46] Søgaard, M., Global residues and two-loop hepta-cuts, JHEP, 09, 116, (2013) · Zbl 1342.81318
[47] Søgaard, M.; Zhang, Y., Multivariate residues and maximal unitarity, JHEP, 12, 008, (2013) · Zbl 1342.81319
[48] Søgaard, M.; Zhang, Y., Unitarity cuts of integrals with doubled propagators, JHEP, 07, 112, (2014)
[49] Søgaard, M.; Zhang, Y., Massive nonplanar two-loop maximal unitarity, JHEP, 12, 006, (2014)
[50] Søgaard, M.; Zhang, Y., Elliptic functions and maximal unitarity, Phys. Rev., D 91, 081701, (2015)
[51] Mastrolia, P.; Ossola, G., On the integrand-reduction method for two-loop scattering amplitudes, JHEP, 11, 014, (2011) · Zbl 1306.81357
[52] Badger, S.; Frellesvig, H.; Zhang, Y., Hepta-cuts of two-loop scattering amplitudes, JHEP, 04, 055, (2012) · Zbl 1348.81340
[53] Zhang, Y., Integrand-level reduction of loop amplitudes by computational algebraic geometry methods, JHEP, 09, 042, (2012) · Zbl 1397.81183
[54] Mastrolia, P.; Mirabella, E.; Ossola, G.; Peraro, T., Scattering amplitudes from multivariate polynomial division, Phys. Lett., B 718, 173, (2012)
[55] Badger, S.; Frellesvig, H.; Zhang, Y., An integrand reconstruction method for three-loop amplitudes, JHEP, 08, 065, (2012) · Zbl 1397.81184
[56] Mastrolia, P.; Mirabella, E.; Ossola, G.; Peraro, T., Integrand-reduction for two-loop scattering amplitudes through multivariate polynomial division, Phys. Rev., D 87, 085026, (2013)
[57] Mastrolia, P.; Mirabella, E.; Ossola, G.; Peraro, T., Multiloop integrand reduction for dimensionally regulated amplitudes, Phys. Lett., B 727, 532, (2013) · Zbl 1331.81218
[58] Badger, S.; Frellesvig, H.; Zhang, Y., A two-loop five-gluon helicity amplitude in QCD, JHEP, 12, 045, (2013)
[59] Bern, Z.; Carrasco, JJM; Johansson, H., New relations for gauge-theory amplitudes, Phys. Rev., D 78, 085011, (2008)
[60] Bern, Z.; Carrasco, JJM; Johansson, H., Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett., 105, 061602, (2010)
[61] Bern, Z.; Carrasco, JJM; Dixon, LJ; Johansson, H.; Roiban, R., Complete four-loop four-point amplitude in \( \mathcal{N}=4 \) super-Yang-Mills theory, Phys. Rev., D 82, 125040, (2010)
[62] Bern, Z.; Czakon, M.; Kosower, DA; Roiban, R.; Smirnov, VA, Two-loop iteration of five-point \( \mathcal{N}=4 \) super-Yang-Mills amplitudes, Phys. Rev. Lett., 97, 181601, (2006) · Zbl 1228.81213
[63] Carrasco, JJ; Johansson, H., Five-point amplitudes in \( \mathcal{N}=4 \) super-Yang-Mills theory and \( \mathcal{N}=8 \) supergravity, Phys. Rev., D 85, 025006, (2012)
[64] Arkani-Hamed, N.; Bourjaily, JL; Cachazo, F.; Caron-Huot, S.; Trnka, J., The all-loop integrand for scattering amplitudes in planar \( \mathcal{N}=4 \) SYM, JHEP, 01, 041, (2011) · Zbl 1214.81141
[65] Bourjaily, JL; Trnka, J., Local integrand representations of all two-loop amplitudes in planar SYM, JHEP, 08, 119, (2015) · Zbl 1388.81710
[66] Arkani-Hamed, N.; Bourjaily, JL; Cachazo, F.; Postnikov, A.; Trnka, J., On-shell structures of MHV amplitudes beyond the planar limit, JHEP, 06, 179, (2015) · Zbl 1388.81272
[67] Franco, S.; Galloni, D.; Penante, B.; Wen, C., Non-planar on-shell diagrams, JHEP, 06, 199, (2015) · Zbl 1388.81148
[68] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, One-loop self-dual and N = 4 super Yang-Mills, Phys. Lett., B 394, 105, (1997)
[69] Kleiss, R.; Kuijf, H., Multi-gluon cross-sections and five jet production at hadron colliders, Nucl. Phys., B 312, 616, (1989)
[70] V. Del Duca, A. Frizzo and F. Maltoni, Factorization of tree QCD amplitudes in the high-energy limit and in the collinear limit, Nucl. Phys.B 568 (2000) 211 [hep-ph/9909464] [INSPIRE].
[71] V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys.B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].
[72] Badger, S.; Frellesvig, H.; Zhang, Y., Multi-loop integrand reduction with computational algebraic geometry, J. Phys. Conf. Ser., 523, 012061, (2014)
[73] Neerven, WL; Vermaseren, JAM, Large loop integrals, Phys. Lett., B 137, 241, (1984)
[74] Britto, R.; Cachazo, F.; Feng, B., New recursion relations for tree amplitudes of gluons, Nucl. Phys., B 715, 499, (2005) · Zbl 1207.81088
[75] Britto, R.; Cachazo, F.; Feng, B.; Witten, E., Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett., 94, 181602, (2005)
[76] S. Catani, S. Dittmaier and Z. Trócsányi, One loop singular behavior of QCD and SUSY QCD amplitudes with massive partons, Phys. Lett.B 500 (2001) 149 [hep-ph/0011222] [INSPIRE]. · Zbl 0972.81667
[77] Smirnov, AV, FIESTA 3: cluster-parallelizable multiloop numerical calculations in physical regions, Comput. Phys. Commun., 185, 2090, (2014) · Zbl 1351.81078
[78] S. Borowka et al., SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun.196 (2015) 470 [arXiv:1502.06595] [INSPIRE]. · Zbl 1360.81013
[79] C.D. White, An introduction to webs, arXiv:1507.02167 [INSPIRE].
[80] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
[81] Smirnov, AV, FIRE5: a C++ implementation of Feynman integral reduction, Comput. Phys. Commun., 189, 182, (2014) · Zbl 1344.81030
[82] T. Gehrmann and E. Remiddi, Two-loop master integrals for γ\^{}{∗} → 3 jets: the planar topologies, Nucl. Phys.B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].
[83] T. Gehrmann and E. Remiddi, Two-loop master integrals for γ\^{}{∗} → 3 jets: the nonplanar topologies, Nucl. Phys.B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.