zbMATH — the first resource for mathematics

Zero-cycles on rational surfaces over number fields. (English) Zbl 0688.14008
The author answers, in the case of rational surfaces with a conic bundle structure \(X/{\mathbb{P}}^ 1_ k\), several statements conjectured by J.-L. Colliot-Thélène and J.-J. Sansuc [cf. Duke Math. J. 48, 421-447 (1981 Zbl 0479.14006)].
More precisely let X be a smooth projective, geometrically integral surface over a perfect \(field\quad k,\) and \(\bar F\) the function field of \(\bar X=\bar k\times_ kX\). A map from \(K_ 2(\bar F)\) to the sum of function fields of all irreducible divisors on X is constructed. Let M be the cokernel of this map. - In this paper it is shown that in the case X is a rational surface with conic bundle structure \(X/{\mathbb{P}}^ 1_ k\) the kernel of the natural map \(H^ 1(Gal(\bar k/k),M)\) to \(\prod_{v}H^ 1(Gal(\bar k_ v/k_ v),M_ v) \) is 0 (where \(k_ v\) is the completion at a place v of k). - As a corollary it is shown that if furthermore \(H^ 1(Gal(\bar k,k),Pic(\bar X))=0\) then there exists a 0-cycle of degree \( 1\) on X if and only if there are 0-cycles of degree \( 1\) on \(X_ v\) at all places v of k. It is also explained how to calculate the order of \(A_ 0(X)\).
Reviewer: A.Papantonopoulou

14C25 Algebraic cycles
14M20 Rational and unirational varieties
14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry
Full Text: DOI EuDML
[1] Bloch, S.: On the Chow groups of certain rational surfaces. Ann. Sci. Ec. Norm. Super.14, 41-59 (1981) · Zbl 0524.14006
[2] Colliot-Th?l?ne J.-L., Coray, D.: L’?quivalence rationnelle sur les points ferm?s des surfaces rationnelles fibr?es en coniques. Compos. Math.39, 301-332 (1979) · Zbl 0386.14003
[3] Colliot-Th?l?ne, J.-L., Ischebeck, F.: L’?quivalence rationnelle sur les cycles de dimension z?ro des vari?t?s alg?briques r?elles. C.R. Acad. Sci. Paris, S?r. I. Math.292, 723-725 (1981) · Zbl 0472.14016
[4] Colliot-Th?l?ne, J.-L., Sansuc, J.-J.: La descente sur les vari?t?s rationnelles. In: Journ?es de G?om?trie alg?brique d’Angers (1979), pp. 223-237, Sijthoff & Noordhoff, Alphen aan den Rijn 1980
[5] Colliot-Th?l?ne, J.-L., Sansuc, J.-J.: On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch. Duke Math. J.48, 421-447 (1981) · Zbl 0479.14006
[6] Colliot-Th?l?ne, J.-L., Sansuc, J.-J., Sir Peter Swinnerton-Dyer: Intersections of two quadrics and Ch?telet surfaces. J. Reine Angew. Math.373, 37-107 (1987) and334, 72-168 (1987)
[7] Kunyavskii, B.?., Skorobogatov, A.N., Tsfasman, M.A.: Combinatorics and geometry of Del Pezzo surfaces of degree 4. Russ. Math. Surv.40:6, 131-132 (1985) (see also ?Del Pezzo Surfaces of degree 4?, to appear in M?moires de la Soc. Math. Fr.) · Zbl 0612.14039
[8] Lang, S.: Algebraic number theory. Reading: Addison-Wesley 1970 · Zbl 0211.38404
[9] Salberger, P.:K-theory of orders and their Brauer-Severi schemes. Thesis, Department of Mathematics, University of G?teborg 1985 · Zbl 0579.16002
[10] Salberger, P.: On the arithmetic of conic bundle surfaces. S?minaire de Th?orie des nombres, Paris 1985-86, Progr. Math.71, Basel Boston: Birkh?user 1987
[11] Sansuc, J.-J.: Groupe de Brauer et arithm?tique des groupes alg?briques lin?aires sur un corps de nombres. J. Reine Angew. Math.327, 12-80 (1981) · Zbl 0468.14007
[12] Sansuc, J.-J.: Descente et principe de Hasse pour certaines vari?t?s rationnelles. S?minaire de Th?orie des Nombres, Paris 1980-81. Progr. Math. 22. Basel Boston: Birkh?user 1982
[13] Sansuc, J.-J.: A propos d’une conjecture arithm?tique sur le groupe de Chow d’une surface rationnelle, S?minaire de Th?orie des Nombres, Bordeaux 1981-82
[14] Tate, J.T.: The cohomology groups of tori in finite Galois extensions of number fields. Nagoya Math. J.27, 709-719 (1966) · Zbl 0146.06501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.