# zbMATH — the first resource for mathematics

Oscillator representations for orthosymplectic algebras. (English) Zbl 0688.17002
An $$\epsilon$$-graded Lie algebra ($$\epsilon$$ GLA) is defined as a $$\Gamma$$-graded algebra with a commutation factor $$\epsilon$$ such that the “$$\epsilon$$ skew symmetry” and “$$\epsilon$$-Jacobi identity” are satisfied. When $$\epsilon (\alpha,\beta)=1$$, the definition reduces to that of an ordinary graded Lie algebra; when $$\Gamma ={\mathbb{Z}}_ 2$$ and $$\epsilon (\alpha,\beta)=(-1)^{\alpha \beta}$$ for $$\alpha,\beta \in {\mathbb{Z}}_ 2$$, it reduces to the definition of a Lie superalgebra [V. G. Kac, Adv. Math. 26, 8-96 (1977; Zbl 0366.17012)]. One of the series of simple Lie superalgebras is the orthosymplectic series. In classical Lie algebra theory, the spin representation of the orthogonal Lie algebra and the metaplectic representation of the symplectic Lie algebra are of great importance. Here, a similar construction unifies these representations and leads to the oscillator representation (or the singleton representation) of the orthosymplectic Lie superalgebra $${\mathfrak osp}(p,2q).$$
An $$\epsilon$$-Heisenberg algebra is introduced by extending the usual definition. Then a Clifford-Weyl algebra is defined for the case of $$\epsilon$$ GLA’s; if $$\epsilon$$ is symmetric it includes a Clifford algebra and if $$\epsilon$$ is skew symmetric it includes a Weyl algebra. Representations of the Clifford-Weyl algebra are obtained from those of the $$\epsilon$$-Heisenberg algebra. Then the orthosymplectic Lie superalgebra is shown to be realizable in the Clifford-Weyl algebra, thus proving that representations of $${\mathfrak osp}(p,2q)$$ can be obtained from those of the $$\epsilon$$-Heisenberg algebra. Unitarity and super unitarity of the representations are investigated.
Reviewer: J.Van der Jeugt

##### MSC:
 17A70 Superalgebras 17B70 Graded Lie (super)algebras
Full Text:
##### References:
  Atiyah, M.F; Bott, R; Shapiro, A, Clifford modules, Topology, 3, Suppl. 1, 3-38, (1964) · Zbl 0146.19001  Barbasch, D; Vogan, D, Primitive ideals and orbital integrals in complex classical groups, Math. ann., 259, 153-199, (1982) · Zbl 0489.22010  Berezin, F.A, Introduction to superanalysis, (1987), Reidel Dordrecht  Bernstein, I.N, The analytic continuation of generalized functions with respect to a parameter, Functional anal. appl., 6, 26-40, (1972)  Bohm, A; Kmiecik, M; Boya, L.J, Representation theory of super-conformal quantum mechanics, J. math. phys., 29, 1163-1170, (1988) · Zbl 0654.17013  Bourbaki, N, Algèbre, (1959), Hermann Paris, Chap. 9 · Zbl 0102.25503  Corwin, L; Ne’eman, Y; Sternberg, S, Graded Lie algebras in mathematics and physics (Bose-Fermi symmetry), Rev. modern phys., 47, 573-603, (1975) · Zbl 0557.17004  Duistermaat, J, Fourier integral operators, (1973), Courant Institute of Math. Soc New York · Zbl 0272.47028  Furutsu, H, On representations of Lie superalgebras, II, (), 147-150 · Zbl 0674.17011  Furutsu, H, Representations of Lie superalgebras. II. unitary representations of Lie superalgebras of type A(n, 0), (1988), preprint · Zbl 0701.17013  Furutsu, H; Hirai, T, Representations of Lie superalgebras. I. extensions of representations of the even part, J. math. Kyoto univ., 28, 695-749, (1988) · Zbl 0674.17010  Günaydin, M, Unitary highest weight representations of non-compact supergroups, J. math. phys., 29, 1275-1282, (1988) · Zbl 0655.17009  Hölmander, L, The analysis of linear partial differential operators I, (1983), Springer-Verlag New York/Berlin  Howe, R, Remarks on classical invariant theory, Trans. amer. math. soc., 313, 539-570, (1989) · Zbl 0674.15021  Howe, R, On the role of Heisenberg group in harmonic analysis, Bull. amer. math. soc., 3, 821-843, (1980) · Zbl 0442.43002  Howe, R, Wave front sets of representations of Lie groups, () · Zbl 0494.22010  Humphreys, J.E, Introduction to Lie algebras and representation theory, (1972), Springer-Verlag New York/Berlin · Zbl 0254.17004  Joseph, A, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. sci. école norm. sup., 9, 1-30, (1976) · Zbl 0346.17008  Kac, V, Lie superalgebras, Adv. in math., 26, 8-96, (1977) · Zbl 0366.17012  Kashiwara, M; Vergne, M, On the Segal-shale-Weil representations and harmonie polynomials, Invent. math., 44, 1-47, (1978) · Zbl 0375.22009  Kashiwara, M; Vergne, M, K-types and singular spectrum, Lecture notes in math., 728, 177-200, (1979)  King, D.R, The character polynomial of the annihilator of an irreducible harish chandra module, Amer. J. math., 103, 1195-1240, (1981) · Zbl 0486.17003  Quint, S.R, Representations of solvable Lie-groups, () · Zbl 0347.22002  Sattinger, D.H; Weaver, O.L, Lie groups and algebras with applications to physics, geometry, and mechanics, (1986), Springer-Verlag New York/Berlin · Zbl 0595.22017  Scheunert, M, Graded tensor calculus, (1982), Universität Bonn, Phisikalische Institute, preprint · Zbl 0547.17003  Shale, D, Linear symmetries of free boson fields, Trans. amer. math. soc., 103, 149-167, (1962) · Zbl 0171.46901  Sternberg, S; Wolf, J.A, Hermitian Lie algebras and metaplectic représentations, I, Trans. amer. math. soc., 238, 1-43, (1978) · Zbl 0386.22010  Torasso, P, Sur le caractère de la représentation de shale-Weil de mn(n, $$R$$) et sp(n, $$C$$), Math. ann., 252, 53-86, (1980) · Zbl 0452.22015  Vogan, D, Gelfand-Kirillov dimension for harish-chandra modules, Invent. math., 48, 75-98, (1978) · Zbl 0389.17002  Weil, A, Sur certains groupes d’opérateurs unitaires, Acta math., 111, 143-211, (1964) · Zbl 0203.03305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.