## The rank condition and convergence of formal functions.(English)Zbl 0688.32008

From the author’s introduction: “In this paper we treat two facts concerning convergence of formal holomorphic functions. One is that, for a germ of holomorphic mappings with maximal generic rank, the formal function at the target converges if its pullback does so (Gabrielov). The other is propagation of convergence along an exceptional set.
Let $$\Phi$$ : $$Y\to X$$ be a morphism between complex spaces and $$\phi$$ : A$$={\mathcal O}_{x,\xi}\to B={\mathcal O}_{y,\eta}$$ the induced homomorphism between analytic local algebras. To simplify the problem, assume that the germs $$X_{\xi}$$ and $$Y_{\eta}$$ are reduced and irreducible, i.e., A and B are integral domains. The author has been interested in equivalence of the following conditions:
(0) $$\exists a\geq 1$$, $$\exists b\geq 0$$, $$\forall f\in A:$$ $$a\nu (f)+b\geq \nu (\phi (f))$$, where $$\nu$$ (f) denotes the vanishing order of f at the point.
(1) Gabrielov’s strong rank condition: The image $$\Phi (Y_{\eta})\subset X_{\xi}$$ has full topological dimension, i.e., grk $$\phi$$ $$=\dim X_{\xi}.$$
(2) $${\hat \phi}{}^{-1}(B)=A$$, i.e., $$f\in \hat A$$ is convergent if its pullback is convergent, where $${\hat \phi}$$: $$\hat A\to \hat B$$ denotes the canonical extension to the completions.
(3) $$\phi$$ is a closed embedding with respect to the Krull topology.
(4) $$\phi$$ is injective and $$\phi$$ (A) is closed in B.”
The following main results are proved: Theorem (9.2). (1) $$\Leftrightarrow$$ (2) ($$\Leftrightarrow$$ (3)). Theorem (9.5). If $$f\in H^ 0(E,\hat {\mathcal O})$$ is convergent at some $$\xi$$, it is convergent everywhere on E, i.e., $$f\in H^ 0(E,{\mathcal O})$$.
Reviewer: M.S.Marinov

### MSC:

 32B10 Germs of analytic sets, local parametrization 32B05 Analytic algebras and generalizations, preparation theorems
Full Text:

### References:

 [1] M. Artin, On the solutions of analytic equations , Invent. Math. 5 (1968), 277-291. · Zbl 0172.05301 [2] S. S. Abhyankar and T. T. Moh, A reduction theorem for divergent power series , J. Reine Angew. Math. 241 (1970), 27-33. · Zbl 0191.04403 [3] S. S. Abhyankar and M. van der Put, Homomorphisms of analytic local rings , J. Reine Angew. Math. 242 (1970), 26-60. · Zbl 0193.00501 [4] J. Becker, Exposé on a conjecture of Tougeron , Ann. Inst. Fourier (Grenoble) 27 (1977), no. 4, 9-27. · Zbl 0337.14002 [5] J. Becker, Solving power series equations, part 2: Change of ground field , Ann. Inst. Fourier (Grenoble) 29 (1979), no. 2, 1-23. · Zbl 0413.13016 [6] J. Becker, On the composition of power series , Commutative algebra (Fairfax, Va., 1979), Lecture Notes in Pure and Appl. Math., vol. 68, Dekker, New York, 1982, pp. 159-172. · Zbl 0514.13015 [7] E. Bierstone and P. D. Milman, Semianalytic and subanalytic sets , preprint, 1987. · Zbl 0674.32002 [8] C. Banika and O. Stanasila, Algebraic Methods in the Global Theory of Complex Spaces , John Wiley, New York, 1976. · Zbl 0334.32001 [9] J. Becker and W. R. Zame, Applications of functional analysis to the solution of power series equations , Math. Ann. 243 (1979), no. 1, 37-54. · Zbl 0413.13015 [10] C. Chevalley, On the theory of local rings , Ann. of Math. (2) 44 (1943), 690-708. JSTOR: · Zbl 0060.06908 [11] P. M. Eakin and G. A. Harris, When $$\Phi(f)$$ convergent implies $$f$$ is convergent , Math. Ann. 229 (1977), no. 3, 201-210. · Zbl 0355.13010 [12] G. Fischer, Complex Analytic Geometry , Lecture Notes in Math., vol. 538, Springer-Verlag, Berlin, 1976. · Zbl 0343.32002 [13] H. Flenner, Die Sätze von Bertini für lokale Ringe , Math. Ann. 229 (1977), no. 2, 97-111. · Zbl 0398.13013 [14] A. M. Gabrielov, The formal relations between analytic functions , Functional Anal. Appl. 5 (1971), 318-319. · Zbl 0254.32009 [15] A. M. Gabrielov, Formal relations among analytic functions , Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 1056-1090. · Zbl 0297.32007 [16] H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen , Math. Ann. 146 (1962), 331-368. · Zbl 0178.42702 [17] H. Grauert and R. Remmert, Analytische Stellenalgebren , Grundlehren Math. Wiss., vol. 176, Springer-Verlag, Berlin, 1971. · Zbl 0231.32001 [18] R. Hartshorne, Algebraic Geometry , Graduate Texts in Math., vol. 52, Springer-Verlag, New York, 1977. · Zbl 0367.14001 [19] H. Hironaka, Subanalytic sets , Number Theory, Algebraic Geometry and Commutative Algebra, in Honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 453-493. · Zbl 0297.32008 [20] H. Hironaka, Introduction to Real-Analytic Sets and Real-Analytic Maps , Istituto Matematico “L. Tonelli” dell’Università di Pisa, 1973. [21] S. Izumi, Linear complementary inequalities for orders of germs of analytic functions , Invent. Math. 65 (1982), no. 3, 459-471. · Zbl 0497.32005 [22] S. Izumi, A measure of integrity for local analytic algebras , Publ. Res. Inst. Math. Sci. 21 (1985), no. 4, 719-735. · Zbl 0587.32016 [23] S. Izumi, Gabrielov’s rank condition is equivalent to an inequality of reduced orders , Math. Ann. 276 (1986), no. 1, 81-89. · Zbl 0612.32013 [24] H. Komatsu, Projective and injective limits of weakly compact sequences of locally convex spaces , J. Math. Soc. Japan 19 (1967), 366-383. · Zbl 0168.10603 [25] H. B. Laufer, Normal Two-Dimensional Singularities , Princeton University Press, Princeton, NJ, 1971. · Zbl 0245.32005 [26] B. Malgrange, Ideals of Differentiable Functions , Tata Institute of Fundamental Research Studies in Mathematics, No. 3, Oxford University Press, Bombay, 1966. · Zbl 0177.17902 [27] B. Malgrange, Frobenius avec singularités, 2. Le cas général , Invent. Math. 39 (1977), no. 1, 67-89. · Zbl 0375.32012 [28] H. Matsumura, Commutative Algebra , 2nd ed., Math. Lecture Note Ser., vol. 56, Benjamin/Cummings, Reading, MA, 1980. · Zbl 0441.13001 [29] P. D. Milman, Analytic and polynomial homomorphisms of analytic rings , Math. Ann. 232 (1978), no. 3, 247-253. · Zbl 0357.32005 [30] R. Moussu and J.-Cl. Tougeron, Fonctions composées analytiques et différentiables , C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 21, Aii, A1237-A1240. · Zbl 0334.32012 [31] M. Nagata, Local Rings , Interscience Tracts in Pure Appl. Math., vol. 13, Interscience, New York-London, 1962. · Zbl 0123.03402 [32] D. Rees, Valuations associated with a local ring, II , J. London Math. Soc. 31 (1956), 228-235. · Zbl 0074.26401 [33] J.-Cl. Tougeron, Courbes analytiques sur une germe d’espace analytique et applications , Ann. Inst. Fourier (Grenoble) 26 (1976), no. 2, 117-131. · Zbl 0318.32005 [34] F. Trèves, Topological Vector Spaces, Distributions and Kernels , Academic Press, New York, 1967. · Zbl 0171.10402 [35] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain , Amer. Math. Soc. Colloq. Publ., vol. 20, Amer. Math. Soc., Providence, RI, 1969. · Zbl 0146.29902 [36] H. Whitney, Complex Analytic Varieties , Addison-Wesley, Reading, MA, 1972. · Zbl 0265.32008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.