Ligocka, Ewa On the Forelli-Rudin construction and weighted Bergman projections. (English) Zbl 0688.32020 Stud. Math. 94, No. 3, 257-272 (1989). The author’s abstract: “We apply the Forelli-Rudin construction to construct the Sobolev spaces of holomorphic functions on some smooth Hartogs domains and the regularity of weighted Bergman projections on weakly regular pseudoconvex domains. We also study the kernels of weighted Bergman projections on strictly pseudoconvex domains.” Reviewer: E.J.Straube Cited in 53 Documents MSC: 32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.) 32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010) 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems 32A99 Holomorphic functions of several complex variables 46E20 Hilbert spaces of continuous, differentiable or analytic functions 32T99 Pseudoconvex domains Keywords:Sobolev spaces of holomorphic functions; smooth Hartogs domains; weighted Bergman projections; pseudoconvex domains × Cite Format Result Cite Review PDF Full Text: DOI EuDML