×

zbMATH — the first resource for mathematics

Coherent instability in wall-bounded shear. (English) Zbl 1444.76060
Summary: The mechanism underlying the coherent hairpin process in wall-bounded shear flows is studied. An algorithm for the identification and analysis of flow structures based on morphological operations is presented. The method distils the topology of the flow field into a discrete data set and enables the time-resolved sampling of coherent flow processes across multiple scales. Application to direct simulation data of transitional and turbulent boundary layers at moderate Reynolds number sheds light on the flow physics of the hairpin process. The analysis links the hairpin to an exponential instability which is amplified in the flow distorted by a negative perturbation in the streamwise velocity component. Linear analyses substantiate the connection to an inviscid instability mechanism of varicose type. The formation of packets of hairpins is related to a self-similar process which originates from a single patch of low-speed fluid and describes a recurrence of the dynamics that leads to the formation of an individual hairpin. Analysis of the evolution of several thousand turbulent hairpins provides a statistical characterization of the principal dynamics and yields a time-resolved average of the hairpin process. Comparisons with the transitional hairpin show qualitatively consistent trends and thus support earlier hypotheses of their equivalence. In terms of the causality of events, the results suggest that the hairpin is a manifestation of the varicose instability and as such is a consequence rather than a cause of the primary perturbations of the flow.

MSC:
76F40 Turbulent boundary layers
76F65 Direct numerical and large eddy simulation of turbulence
Software:
eigs; IRAM; P - ARPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adrian, R. J., Hairpin vortex organization in wall turbulence, Phys. Fluids, 19, (2007) · Zbl 1146.76307
[2] Adrian, R. J.; Meinhart, C. D.; Tomkins, C. D., Vortex organization in the outer region of the turbulent boundary layer, J. Fluid Mech., 422, 1-54, (2000) · Zbl 0959.76503
[3] Del Alamo, J. C.; Jimenéz, J., Linear energy amplification in turbulent channels, J. Fluid Mech., 559, 205-213, (2006) · Zbl 1095.76021
[4] Del Alamo, J. C.; Jimenéz, J.; Zandonade, P.; Moser, R., Self-similar vortex clusters in the turbulent logarithmic region, J. Fluid Mech., 561, 329-358, (2006) · Zbl 1157.76346
[5] Andersson, P.; Brandt, L.; Bottaro, A.; Henningson, D. S., On the breakdown of boundary layer streaks, J. Fluid Mech., 428, 29-60, (2001) · Zbl 0983.76025
[6] Asai, M.; Minagawa, M.; Nishioka, M., The instability and breakdown of a near-wall low-speed streak, J. Fluid Mech., 455, 289-314, (2002) · Zbl 1147.76300
[7] Aubry, N.; Holmes, P.; Stone, E., The dynamics of coherent structure in the wall region of a turbulent boundary layer, J. Fluid Mech., 192, 115-173, (1988) · Zbl 0643.76066
[8] Bakewell, H. P.; Lumley, J. L., Viscous sublayer and adjacent wall region in turbulent pipe flow, Phys. Fluids, 10, 9, 1880-1889, (1967)
[9] Blackburn, H. M.; Mansour, N. N.; Cantwell, B. J., Topology of fine-scale motions in turbulent channel flow, J. Fluid Mech., 310, 269-292, (1996) · Zbl 0864.76036
[10] Blackwelder, R. F.; Kaplan, R. E., On the wall structure of the turbulent boundary layer, J. Fluid Mech., 76, 89-112, (1976)
[11] Butler, K. M.; Farrell, B. F., Three-dimensional optimal perturbations in viscous shear flow, Phys. Fluids A, 4, 8, 1637-1650, (1992)
[12] Chong, M. S.; Perry, A. E.; Cantwell, B. J., A general classification of three-dimensional flow fields, Phys. Fluids A, 2, 765-777, (1990)
[13] Corino, E. R.; Brodkey, R. S., A visual investigation of the wall region in turbulent flow, J. Fluid Mech., 37, 1-30, (1969)
[14] Cossu, C.; Pujals, G.; Depardon, S., Optimal transient growth and very large-scale structures in turbulent boundary layers, J. Fluid Mech., 619, 79-94, (2009) · Zbl 1156.76400
[15] Dennis, D. J. C.; Nickels, T. B., Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets, J. Fluid Mech., 673, 180-217, (2011) · Zbl 1225.76009
[16] Dennis, D. J. C.; Nickels, T. B., Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures, J. Fluid Mech., 673, 218-244, (2011) · Zbl 1225.76034
[17] Elsinga, G. E.; Poelma, C.; Schröder, A.; Geisler, R.; Scarano, F.; Westerweel, J., Tracking of vortices in a turbulent boundary layer, J. Fluid Mech., 697, 273-295, (2012) · Zbl 1250.76112
[18] Farrell, B. F., Developing disturbances in shear, J. Atmos. Sci., 44, 16, 2191-2199, (1987)
[19] Fasel, H.; Konzelmann, U., Non-parallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations, J. Fluid Mech., 221, 311-347, (1990) · Zbl 0715.76019
[20] Hack, M. J. P.; Moin, P., Algebraic disturbance growth by interaction of Orr and lift-up mechanisms, J. Fluid Mech., 829, 112-126, (2017)
[21] Hack, M. J. P.; Zaki, T. A., The influence of harmonic wall motion on transitional boundary layers, J. Fluid Mech., 760, 63-94, (2014)
[22] Hack, M. J. P.; Zaki, T. A., Streak instabilities in boundary layers beneath free-stream turbulence, J. Fluid Mech., 741, 280-315, (2014)
[23] Hack, M. J. P.; Zaki, T. A., Data-enabled prediction of streak breakdown in pressure-gradient boundary layers, J. Fluid Mech., 801, 43-64, (2016)
[24] Head, M. R.; Bandyopadhyay, P., New aspects of turbulent boundary-layer structure, J. Fluid Mech., 107, 297-338, (1981)
[25] Herbert, T.1984 Analysis of the subharmonic route to transition in boundary layers. AIAA Paper 84 (0009).
[26] Herbert, T., Secondary instability of boundary layers, Annu. Rev. Fluid Mech., 20, 487-526, (1988)
[27] Hultgren, L. S.; Gustavsson, L. H., Algebraic growth of disturbances in a boundary layer, Phys. Fluids, 24, 1000-1004, (1981) · Zbl 0466.76030
[28] Hunt, J. C. R., Wray, A. A. & Moin, P.1988Eddies, stream, and convergence zones in turbulent flows. In Center for Turbulence Research, Proceedings of the Summer Program, pp. 193-208. Stanford University.
[29] Jimenéz, J., How linear is wall-bounded turbulence?, Phys. Fluids, 25, (2013)
[30] Kachanov, Y. S.; Levchenko, V. Y., The resonant interaction of disturbances at laminar – turbulent transition in a boundary layer, J. Fluid Mech., 138, 209-247, (1984)
[31] Kim, J., On the structure of wall-bounded turbulent flows, Phys. Fluids, 26, 2088-2097, (1983) · Zbl 0522.76058
[32] Kim, J.; Moin, P., The structure of the vorticity field in turbulent channel flow. Part 2. Study of ensemble-averaged fields, J. Fluid Mech., 162, 339-363, (1986)
[33] Klebanoff, P. S.; Tidstrom, K. D.; Sargent, L. M., The three-dimensional nature of boundary layer instability, J. Fluid Mech., 12, 1, 1-34, (1962) · Zbl 0131.41901
[34] Kline, S. J.; Reynolds, W. C.; Schraub, F. A.; Runstadler, P. W., The structure of turbulent boundary layers, J. Fluid Mech., 30, 741-773, (1967)
[35] Kong, T. Y.; Rosenfeld, A., Digital topology: introduction and survey, Comput. Vis. Graph. Image Process., 48, 357-393, (1989)
[36] Lam, L.; Lee, S. W.; Suen, C. Y., Thinning methodologies – a comprehensive survey, IEEE Trans. Pattern Anal. Mach. Intell., 8, 869-885, (1992)
[37] Landahl, M. T., Wave breakdown and turbulence, SIAM J. Appl. Math., 28, 4, 735-756, (1975) · Zbl 0276.76023
[38] Lee, T.-C.; Kashyap, R. L., Building skeleton models via 3-d medial surface/axis thinning algorithms, CVGIP: Graph. Models Image Process., 56, 6, 462-478, (1994)
[39] Lehew, J.; Guala, M.; Mckeon, B. J., Time-resolved measurements of coherent structures in the turbulent boundary layer, Exp. Fluids, 54, 4, 1-16, (2013)
[40] Lobregt, S.; Verbeek, W.; Groen, F. C. A., Three-dimensional skeletonization: principle and algorithm, IEEE Trans. Pattern Anal. Mach. Intell., 2, 75-77, (1980)
[41] Lozano-Durán, A.; Jimenéz, J., Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades, J. Fluid Mech., 759, 432-471, (2014)
[42] Marquillie, M.; Ehrenstein, U.; Laval, J.-P., Instability of streaks in wall turbulence with adverse pressure gradient, J. Fluid Mech., 681, 205-240, (2011) · Zbl 1241.76178
[43] Maschhoff, K. J. & Sorensen, D. C.1996P_ARPACK: An efficient portable large scale eigenvalue package for distributed memory parallel architectures. In Lecture Notes in Computer Science (ed. Waśniewski, J., Dongarra, M. K., J. & Olesen, D.), , vol. 1184. Springer. · Zbl 0886.65034
[44] Moin, P.; Kim, J., The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous fields and statistical correlations, J. Fluid Mech., 155, 441-464, (1985)
[45] Moin, P.; Moser, R., Characteristic-eddy decomposition of turbulence in a channel, J. Fluid Mech., 200, 471-509, (1989) · Zbl 0659.76062
[46] Morgenthaler, D. G.1981 Three-dimensional simple points: serial erosion, parallel thinning and skeletonization. Tech. Rep. TR-1005, Computer Vision Laboratory, University of Maryland.
[47] Park, G. I.; Wallace, J. M.; Wu, X.; Moin, P., Boundary layer turbulence in transitional and developed states, Phys. Fluids, 24, (2012)
[48] Perry, A. E.; Chong, M. S., On the mechanism of wall turbulence, J. Fluid Mech., 119, 172-217, (1982) · Zbl 0517.76057
[49] Reynolds, W. C.; Hussain, A. K. M. F., The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments, J. Fluid Mech., 54, 263-288, (1972)
[50] Robinson, S. K., Coherent motions in the turbulent boundary layer, Annu. Rev. Fluid Mech., 23, 601-639, (1991)
[51] Rogers, M. M.; Moin, P., The structure of the vorticity field in homogeneous turbulent flows, J. Fluid Mech., 176, 33-66, (1987)
[52] Sayadi, T.; Hamman, C. W.; Moin, P., Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers, J. Fluid Mech., 724, 480-509, (2013) · Zbl 1287.76138
[53] Sayadi, T.; Schmid, P. J.; Nichols, J. W.; Moin, P., Reduced-order representation of near-wall structures in the late transitional boundary layer, J. Fluid Mech., 748, 278-301, (2014)
[54] Schlatter, P.; Li, Q.; Örlu, R.; Hussain, F.; Henningson, D. S., On the near-wall vortical structures at moderate Reynolds numbers, Eur. J. Mech. (B/Fluids), 48, 75-93, (2014) · Zbl 06931934
[55] Schmid, P. J., Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656, 5-28, (2010) · Zbl 1197.76091
[56] Sharma, A. S.; Mckeon, B. J., On coherent structures in wall turbulence, J. Fluid Mech., 728, 196-238, (2013) · Zbl 1291.76173
[57] Smith, C. R.; Walker, J. D. A.; Haidari, A. H.; Sobrun, U., On the dynamics of near-wall turbulence, Proc. R. Soc. Lond. A, 336, 131-175, (1991) · Zbl 0731.76033
[58] Smits, A. J.; Mckeon, B. J.; Marusic, I., High Reynolds number wall turbulence, Annu. Rev. Fluid Mech., 43, 353-375, (2011) · Zbl 1299.76002
[59] Sorensen, D. C., Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl., 13, 1, 357-385, (1992) · Zbl 0763.65025
[60] Swearingen, J. D.; Blackwelder, R. F., The growth and breakdown of streamwise vortices in the presence of a wall, J. Fluid Mech., 187, 255-290, (1987)
[61] Theodorsen, T.1952Mechanism of turbulence. In Proceedings of 2nd Midwestern Conference of Fluid Mechanics. Ohio State University. · Zbl 0142.44201
[62] Theodorsen, T.1955The structure of turbulence. In 50 Jahre Grenzschichtforschung (ed. Görtler, H. & Tollmien, W.). Friedrich Vieweg & Sohn. · Zbl 0068.39301
[63] Tollmien, W.1929Über die Entstehung der Turbulenz. In Abhandlungen der Gesellschaft der Wissenschaften in Göttingen - Mathematisch-Physikalische Klasse, pp. 21-43. · JFM 55.0474.01
[64] Townsend, A. A., Equilibrium layers and wall turbulence, J. Fluid Mech., 11, 97-120, (1961) · Zbl 0127.42602
[65] Trefethen, L. N.; Trefethen, A. N.; Reddy, S. C.; Driscoll, T. A., Hydrodynamic stability without eigenvalues, Science, 261, 5121, 578-584, (1993) · Zbl 1226.76013
[66] Wallace, J. M.; Eckelmann, H.; Brodkey, R. S., The wall region in turbulent shear flow, J. Fluid Mech., 54, 39-48, (1972)
[67] White, F. M., Viscous Fluid Flow, (2005), McGraw-Hill
[68] Wu, X.; Moin, P., Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer, J. Fluid Mech., 630, 5-41, (2009) · Zbl 1181.76084
[69] Wu, X.; Moin, P.; Wallace, J. M.; Skarda, J.; Lozano-Durán, A.; Hickey, J.-P., Transitional – turbulent spots and turbulent – turbulent spots in boundary layers, Proc. Natl Acad. Sci. USA, 114, 27, (2017)
[70] Yang, Y.; Pullin, D. I., Geometric study of Lagrangian and Eulerian structures in turbulent channel flow, J. Fluid Mech., 674, 67-92, (2011) · Zbl 1241.76289
[71] Yang, Y., Zaho, Y., Xiong, S., Hack, M. J. P. & Kim, J.2016Evolution of vortex-surface fields in the K-type transitional boundary layer. In Center for Turbulence Research, Proceedings of the Summer Program, pp. 203-212. Stanford University.
[72] Zhou, J.; Adrian, R. J.; Balachandar, S.; Kendall, T. M., Mechanisms for generating coherent packets of hairpin vortices in channel flow, J. Fluid Mech., 387, 353-396, (1999) · Zbl 0946.76030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.