zbMATH — the first resource for mathematics

Collective mode mining from molecular dynamics simulations: a comparative approach. (English) Zbl 1404.82056
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
Full Text: DOI
[1] Ajori, S.; Ansari, R.; Haghighi, S., Vibration characteristics of three-dimensional metallic carbon nanostructures with interlocking hexagons pattern (T6 and T14): A molecular dynamics study, Comp. Mater. Sci., 128, 81-86, (2017)
[2] Allen, M. P.; Attig, N.; Binder, K.; Grubmüller, H.; Kremer, K., Lecture Notes, 23, Introduction to molecular dynamics simulations, in computational soft matter: from synthetic polymers to proteins, 1-28, (2004), NIC-Directors, Juelich, Germany
[3] Amadei, A.; Linssen, A. B. M.; Berendsen, H. J. C., Essential dynamics proteins, Proteins, 17, 412-425, (1993)
[4] Ansari, R.; Ajori, S., Molecular dynamics study of the torsional vibration characteristics of boron-nitride nanotubes, Phys. Lett. A, 378, 2876-2880, (2014)
[5] Ansari, R.; Ajori, S.; Arash, B., Vibrations of single- and double-walled carbon nanotubes with layerwise boundary conditions: A molecular dynamics study, Curr. Appl. Phys., 12, 707-711, (2012)
[6] Ashcroft, N. W.; Mermin, N. D., Solid State Physics, (1976), Saunders College Publishing, New York · Zbl 1118.82001
[7] Bansil, R.; Berger, T.; Toukan, K.; Ricci, M. A.; Chen, S. H., A molecular dynamics study of the OH stretching vibrational spectrum of liquid water, Chem. Phys. Lett., 132, 165-172, (1986)
[8] Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P., Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys., 73, 515-562, (2001)
[9] Born, M.; Huang, K., Dynamical Theory of Crystal Lattices, (1962), Clarendon Press, Oxford
[10] Camiola, V. D.; Farchioni, R.; Pellegrini, V.; Tozzini, V., Hydrogen transport within graphene multilayers by means of flexural phonons, \(2\)D Mater, 2, 014009, (2015)
[11] Cui, Q.; Bahar, I., Normal Mode Analysis, Theory and Applications, (2006), Chapman & Hall/CRC, New York
[12] Daidone, I.; Amadei, A., Essential dynamics: foundation and applications, WIREs Comput. Mol. Sci., 2, 762-770, (2012)
[13] Di Fenza, A.; Rocchia, W.; Tozzini, V., Complexes of HIV-1 integrase with HAT proteins: multiscale models, dynamics, and hypotheses on allosteric sites of inhibition, Proteins, 76, 946-958, (2009)
[14] Fabian, J.; Allen, P. B., Anharmonic decay of vibrational states in amorphous silicon, Phys. Rev. Lett., 77, 3839-3842, (1996)
[15] Farchioni, R., Camiola, V. D., Garberoglio, G. and Tozzini, V. [2018] “Coherency and anharmonicity in flexural phonons of graphene: A simulation study,”.
[16] Geim, A.; Novoselov, K., The rise of graphene, Nat. Mater., 6, 183-191, (2007)
[17] Han, P.; Vilciauskas, L.; Bester, G., Vibron-vibron coupling from ab initio molecular dynamics simulations of a silicon cluster, New J. Phys., 15, 043039, (2013)
[18] Humphrey, W.; Dalke, A.; Schulten, K., VMD — visual molecular dynamics, J. Mol. Graph., 14, 33-38, (1996)
[19] Kaltzoglou, A.; Antoniadou, M.; Kontos, A. G.; Stoumpos, C. C.; Perganti, D.; Siranidi, E.; Raptis, V.; Trohidou, K.; Psycharis, V.; Kanatzidis, M. G.; Falaras, P., Optical-vibrational properties of the Cs2snx6 (\(\text{X} = \text{Cl}\), br, I) defect perovskites and hole-transport efficiency in Dye-sensitized solarcells, J. Phys. Chem. C, 120, 11777-11785, (2016)
[20] Kohanoff, J., Phonon spectra from short non-thermally equilibrated molecular dynamics simulations, Comput. Mater. Sci., 2, 221-232, (1994)
[21] Koukaras, E. N.; Kalosakas, G.; Galiotis, C.; Papagelis, K., Phonon properties of graphene derived from molecular dynamics simulations, Sci. Rep., 5, 12923, (2015)
[22] Lindsay, L.; Broido, D. A., Optimized tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene, Phys. Rev. B, 81, 205441, (2010)
[23] Lu, S.; McGaughey, A. J. H., Thermal conductance of graphene/hexagonal boron nitride heterostructures, J. Appl. Phys., 121, 115103, (2017)
[24] Lv, W.; Henry, A., Phonon transport in amorphous carbon using Green-kubo modal analysis, New J. Phys., 108, 181905, (2016)
[25] Sathyabnaryana, D. N., Vibrational Spectroscopy, Theory and Applications, (2004), New Age International (P)Ltd.
[26] Tersoff, J., New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 37, 9991, (1988)
[27] Thomas, M.; Brehm, M.; Fligg, R.; Vöhringer, P.; Kirchnerw, B., Computing vibrational spectra from ab initio molecular dynamics, Phys. Chem. Chem. Phys., 15, 6608-6622, (2013)
[28] Todorov, I. T.; Smith, W.; Trachenko, K.; Dove, M. T., DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism, J. Mater. Chem., 16, 1911-1918, (2006)
[29] Tozzini, V.; Bizzarri, A. R.; Pellegrini, V.; Nifosì, R.; Giannozzi, P.; Iuliano, A.; Cannistraro, S.; Beltram, F., The low frequency vibrational modes of Green fluorescent proteins, Chem. Phys., 287, 33-42, (2003)
[30] Zakharchenko, K. V.; Katsnelson, M. I.; Fasolino, A., Finite temperature lattice peroperties of graphene beyond the quasiharmonic approximation, Phys. Rev. Lett., 102, 046808, (2009)
[31] Zimmermann, M. T.; Kloczkowski, A.; Jernigan, R. L., MAVENs: motion analysis and visualization of elastic networks and structural ensembles, BMC Bioinformatics, 12, 264, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.