×

zbMATH — the first resource for mathematics

Numerical simulations of gaseous detonation propagation using different supercomputing architechtures. (English) Zbl 1404.80010

MSC:
80A25 Combustion
65Y10 Numerical algorithms for specific classes of architectures
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76L05 Shock waves and blast waves in fluid mechanics
80M25 Other numerical methods (thermodynamics) (MSC2010)
Software:
AUSM; CHEMKIN; CUDA; LOGOS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Browne, S., Ziegler, J. and Shepherd, J. E. [2004] “Numerical solution methods for shock and detonation jump conditions,” GALCIT Report FM2006.006.
[2] CHEMKIN [2000] “A software package for the analysis of gas-phase chemical and plasma kinetics. CHE-036-1,” Chemkin collection release 3.6, Reaction Design.
[3] Ferziger, J. T.; Peric, M., Computational Methods for Fluid Dynamics, (2002), Springer, New York · Zbl 0998.76001
[4] Fletcher, K., Computational Methods in Fluid Dynamics, (1991), Wiley, New York
[5] Gordon, S. and McBride, B. J. [1994] “Computer program for calculation of complex chemical equilibrium compositions and applications I. Analysis,” NASA RP-1311.
[6] Gwak, M.; Lee, Y.; Kim, K.; Yoh, J. J., Deformable wall effects on the detonation of combustible gas mixture in a thin-walled tube, Int. J. Hydrogen Energy, 40, 7, 3006-3014, (2015)
[7] Heidari, A.; Wen, J. X., Numerical simulation of flame acceleration and deflagration to detonation transition in hydrogen-air mixture, Int. J. Hydrogen Energy, 39, 33, 21317-21327, (2014)
[8] Kee, R. J., Miller, J. A. and Jefferson, T. H. [1980] “Chemkin: A general-purpose, problem-independent, transportable Fortran chemical kinetics code package,” Sandia National Laboratories Report SAND80-8003.
[9] Koren, B.; Vreugdenhil, C. B.; Koren, B., Numerical Methods for Advection — Diffusion Problems, A robust upwind discretisation method for advection, diffusion and source terms, 117, (1993), Vieweg, Braunschweig
[10] Liou, M.-S., A sequel to AUSM: AUSM+, J. Comput. Phys., 129, 364-382, (1996) · Zbl 0870.76049
[11] Liska, R.; Wendroff, B., Comparison of several difference schemes on 1d and 2d test problems for the Euler equations, SIAM J. Sci. Comput., 25, 3, 995-1017, (2003) · Zbl 1096.65089
[12] Maas, U.; Warnatz, J., Ignition process in hydrogen-oxygen mixtures, Combust. Flame, 74, 1, 53-69, (1988)
[13] Marinov, N. M.; Pitz, W. J.; Westbrook, C. K.; Hori, M.; Matsunaga, N., An experimental and kinetic calculation of the promotion effect of hydrocarbons on the NO-NO\({}_{\text{2}}\) conversion in a flow reactor, Proc. Combustion Institute, 27, 389-396, (1998)
[14] Martynenko, V. V.; Penyaz’kov, O. G.; Ragotner, K. A.; Shabunya, S. I., High-temperature ignition of hydrogen and air at high pressures downstream of the reflected shock wave, J. Eng. Phys. Thermophys., 77, 4, 785-793, (2004)
[15] Nikitin, V. F.; Dushin, V. R.; Phylippov, Y. G.; Legros, J. C., Pulse detonation engines: technical approaches, Acta Astronaut., 64, 281-287, (2009)
[16] Novikov, E. A., L-stable (4,2)-method of fourth order to solve hard problems, VestnikSamGU — natural Science Series, 8, 89, 59-68, (2011)
[17] NVIDIA CUDA [2014] “Programming guide,” Available at http://developer.nvidia.com/cuda-downloads.
[18] Orlova, E. J., Chemistry and Technology of High Explosives, Science, 312, (1981)
[19] Penyazkov, O. G.; Ragotner, K. A.; Dean, A. J.; Varatharajan, B., Autoignition of propane-air mixtures behind reflected shock waves, Proc. Combust. Inst., 30, 2, 1941-1947, (2005)
[20] Phylippov, Yu. G.; Dushin, V. R.; Nikitin, V. F.; Nerchenko, V. A.; Korolkova, N. V.; Guendugov, V. M., Fluid mechanics of pulse detonation thrusters, Acta Astronaut., 76, 115-126, (2012)
[21] Pozdnyakov, Z. G.; Rossi, B. D., Handbook of Industrial Explosives and Means of Blasting, (1977), Nedra, Moscow
[22] Smirnov, N. N.; Nikitin, V. F., Modeling and simulation of hydrogen combustion in engines, Int. J. Hydrogen Energy, 39, 2, 1122-1136, (2014)
[23] Smirnov, N. N.; Betelin, V. B.; Nikitin, V. F.; Phylippov, Yu. G.; Koo, J., Detonation engine fed by acetylene-oxygen mixture, Acta Astronaut., 104, 134-146, (2014)
[24] Smirnov, N. N.; Betelin, V. B.; Shagaliev, R. M.; Nikitin, V. F.; Belyakov, I. M.; Deryuguin, Yu. N.; Aksenov, S. V.; Korchazhkin, D. A., Hydrogen fuel rocket engines simulation using LOGOS code, Int. J. Hydrogen Energy, 39, 10748-10756, (2014)
[25] Smirnov, N. N.; Nikitin, V. F.; Alari Shurehdely, S., Transient regimes of wave propagation in metastable systems, Combust., Explosion Shock Waves, 44, 5, 25-37, (2008)
[26] Smirnov, N. N.; Nikitin, V. F.; Alari Shurehdely, S., Investigation of self-sustaining waves in metastable systems: deflagration-to-detonation transition, J. Propulsion Power, 25, 3, 593-608, (2009)
[27] Smirnov, N. N.; Nikitin, V. F.; Phylippov, Yu. G., Deflagration to detonation transition in gases in tubes with cavities, J. Eng. Phys. Thermophys., 83, 6, 1287-1316, (2010)
[28] Smirnov, N. N.; Betelin, V. B.; Nikitin, V. F.; Stamov, L. I.; Altoukhov, D. I., Accumulation of errors in numerical simulations of chemically reacting gas dynamics, Acta Astronaut., 117, 338-355, (2015)
[29] Sod, G. A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27, 1-31, (1978) · Zbl 0387.76063
[30] van Leer, B., Towards the ultimate conservative difference scheme. A second order sequel to godunov’s method, J. Comput. Phys., 32, 101-136, (1979) · Zbl 1364.65223
[31] Wang, Y.; Wang, J., Effect of equivalence ratio on the velocity of rotating detonation, Int. J. Hydrogen Energy, 40, 25, 7949-7955, (2015)
[32] Wang, Y.; Wang, J.; Li, Y.; Li, Y., Induction for multiple rotating detonation waves in the hydrogen-oxygen mixture with tangential flow, Int. J. Hydrogen Energy, (2014)
[33] Wu, D.; Liu, Y.; Wang, J., Numerical investigations of the restabilization of hydrogen-air rotating detonation engines, Int. J. Hydrogen Energy, 39, 25, 15803-15809, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.