×

zbMATH — the first resource for mathematics

A SPH implementation with ignition and growth and afterburning models for aluminized explosives. (English) Zbl 1404.76212

MSC:
76M28 Particle methods and lattice-gas methods
80M25 Other numerical methods (thermodynamics) (MSC2010)
80A25 Combustion
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
76L05 Shock waves and blast waves in fluid mechanics
Software:
JWL++; LS-DYNA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bdzil, J. B., DSD front models: nonideal explosive detonation in ANFO, Proc. Int. 12th Symp.on Detoantion, 409-417, (2002)
[2] Boiko, V. M.; Poplavski, S. V., Self-ignition and ignition of aluminum powders in shock waves, Shock Waves, 11, 4, 289-295, (2002)
[3] Cook, M. A., Aluminized explosives, J. Phys. Chem., 61, 2, 189-196, (1957)
[4] Cooper, P. W., Explosives Engineering, (1996), VCH, New York
[5] Cooper, P. W.; Kurowski, S. R., Introduction to the Technology of Explosives, (1996), VCH, New York
[6] Kuhl, A. L.; Bell, J. B.; Beckner, J. B., Heterogeneous continuum model of aluminum particle combustion in explosions, Combust. Explos. Shock Waves, 46, 4, 433-448, (2010)
[7] Kuhl, A. L.; Bell, J. B.; Beckner, V. E., Gas-dynamic model of turbulent combustion in TNT explosions, 33rd Int. Combustion Symp., (2010)
[8] Kuhl, A. L.; Howard, M.; Fried, L., Thermodynamic model of afterburning in explosions, 34th International ICT Conference: Energetic Materials: Reactions of Propellants, Explosives and Pyrotechnics, (2003)
[9] Lee, E. L.; Tarver, C. M., Phenomenological model of shock initiation in heterogeneous explosives, Phys. Fluids, 23, 12, 2362-2372, (1980)
[10] Liu, G. R.; Liu, M. B., Smoothed Particle Hydrodynamics: A Meshfree Particle Method, (2003), World Scientific, Singapore · Zbl 1046.76001
[11] Liu, M. B.; Liu, G. R.; Zong, Z.; Lam, K. Y., Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology, Comput. Fluids, 32, 3, 305-322, (2003) · Zbl 1009.76525
[12] Liu, M. B.; Liu, G. R.; Lam, K. Y.; Zong, Z., Smoothed particle hydrodynamics for numerical simulation of underwater explosion, Comput. Mech., 30, 2, 106-118, (2003) · Zbl 1128.76352
[13] Liu, M. B.; Liu, G. R.; Lam, K. Y.; Zong, Z., Meshfree particle simulation of the detonation process for high explosives in shaped charge unlined cavity configurations, Shock Waves, 12, 6, 509-520, (2003)
[14] Manner, V. M., The role of aluminum in the detonation and postdetonation expansion of selected cast HMX-based explosives, Propell. Explos. Pyrotech., 37, 2, 198-206, (2012)
[15] Miller, P. J., A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives, Mat. Res. Soc. Proc., 418, 413-420, (1995)
[16] Souers, P. C., JWL++: A simple reactive flow code package for detonation, Propell. Explos. Pyrotech., 25, 2, 54-58, (2000)
[17] Tarver, C. M., Ignition and growth modeling of LX-17 hockey puck experiments, Propell. Explos. Pyrotech., 30, 2, 109-117, (2005)
[18] Tarver, C. M., Manganin gauge and reactive flow modeling study of the shock initiation of PBX 9501, AIP Conf. Proc. Shock Compression of Condensed Matter-2001, 620, 1043, (2002), AIP Press, Atlanta, CA
[19] Tarver, C. M.; Chidester, S. M., Modeling LX-17 detonation growth and decay using the ignition and growth model, Shock Compression of Condensed Matter-2009, AIP Conference Proc., 1195, 249-254, (2009)
[20] Tarver, C. M.; Hallquist, J. O., Modeling two-dimensional shock initiation and detonation-wave phenomena in PBX 9404 and LX-17, Seventh Int. Symp. On Detonation, 488-497, (1981)
[21] Tarver, C. M.; McGuire, E. M., Reactive flow modeling of the interaction of TATB detonation waves with inert materials, Proc. 12th Int. Detonation Symp., 641-649, (2002)
[22] Togashi, F., Numerical simulation of TNT-al explosives in explosion chamber, 7th Int. Conf. on Computational Fluid Dynamics, (2002)
[23] Togashi, F., Numerical simulation of long-duration blast wave evolution in confined facilities, Shock Waves, 20, 5, 409-424, (2010) · Zbl 1269.76067
[24] Wackerle, J., A shock initiaison study of PBX-9404, Shock, 1, 2, 5, (1978)
[25] Wilkins, M. L.; Squier, B.; Halperin, B., Equation of state for detonation products of PBX 9404 and LX04-01, Symp. (Int.) on Combustion, 10, 769-778, (1965)
[26] Zhou, Z. Q., A new method for determining the equation of state of aluminized explosive, Chin. Phys. Lett., 32, 1, 016401, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.