×

zbMATH — the first resource for mathematics

Regularization method for large eddy simulations of shock-turbulence interactions. (English) Zbl 1391.76203
Summary: The rapid change in scales over a shock has the potential to introduce unique difficulties in large eddy simulations (LES) of compressible shock-turbulence flows if the governing model does not sufficiently capture the spectral distribution of energy in the upstream turbulence. A method for the regularization of LES of shock-turbulence interactions is presented which is constructed to enforce that the energy content in the highest resolved wavenumbers decays as \(k^{- 5 / 3}\), and is computed locally in physical-space at low computational cost. The application of the regularization to an existing subgrid scale model is shown to remove high wavenumber errors while maintaining agreement with direct numerical simulations (DNS) of forced and decaying isotropic turbulence. Linear interaction analysis is implemented to model the interaction of a shock with isotropic turbulence from LES. Comparisons to analytical models suggest that the regularization significantly improves the ability of the LES to predict amplifications in subgrid terms over the modeled shockwave. LES and DNS of decaying, modeled post shock turbulence are also considered, and inclusion of the regularization in shock-turbulence LES is shown to improve agreement with lower Reynolds number DNS.

MSC:
76F65 Direct numerical and large eddy simulation of turbulence
76L05 Shock waves and blast waves in fluid mechanics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
Software:
VTF
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, N. A.; Stolz, S., A subgrid-scale deconvolution approach for shock capturing, J. Comput. Phys., 178, 2, 391-426, (2002) · Zbl 1139.76319
[2] Agui, J. H.; Briassulis, G.; Andreopoulos, Y., Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields, J. Fluid Mech., 524, 143-195, (2005) · Zbl 1060.76500
[3] Barre, S.; Alem, D.; Bonnet, J. P., Experimental study of a normal shock/homogeneous turbulence interaction, AIAA J., 34, 5, 968-974, (1996)
[4] Batchelor, G. K., The theory of homogeneous turbulence, (1953), Cambridge University Press · Zbl 0053.14404
[5] Bermejo-Moreno, I.; Larsson, J.; Lele, S. K., LES of canonical shock-turbulence interaction, (CTR Annual Research Briefs (Stanford University), (2010)), 209-222
[6] Blaisdell, G. A., Numerical simulation of compressible homogeneous turbulence, (1991), Stanford University, PhD thesis
[7] Borue, V.; Orszag, S. A., Numerical study of three-dimensional Kolmogorov flow at high Reynolds numbers, J. Fluid Mech., 306, 293-323, (1996) · Zbl 0857.76034
[8] Chung, D.; Pullin, D. I., Large-eddy simulation and wall modelling of turbulent channel flow, J. Fluid Mech., 631, 281-309, (2009) · Zbl 1181.76088
[9] Cook, A. W.; Cabot, W. H., A high-wavenumber viscosity for high-resolution numerical methods, J. Comput. Phys., 195, 2, 594-601, (2004) · Zbl 1115.76366
[10] Cook, A. W.; Cabot, W. H., Hyperviscosity for shock-turbulence interactions, J. Comput. Phys., 203, 2, 379-385, (2005) · Zbl 1143.76477
[11] Dantinne, G.; Jeanmart, H.; Winckelmans, G. S.; Legat, V.; Carati, D., Hyperviscosity and vorticity-based models for subgrid scale modeling, Appl. Sci. Res., 59, 4, 409-420, (1997) · Zbl 0928.76077
[12] Deiterding, R.; Radovitzky, R.; Mauch, S. P.; Noels, L.; Cummings, J. C.; Meiron, D. I., A virtual test facility for the efficient simulation of solid material response under strong shock and detonation wave loading, Eng. Comput., 22, 3-4, 325-347, (2006)
[13] Dimotakis, P. E., The mixing transition in turbulent flows, J. Fluid Mech., 409, 69-98, (2000) · Zbl 0986.76024
[14] Dubois, T.; Domaradzki, J. A.; Honein, A., The subgrid-scale estimation model applied to large eddy simulations of compressible turbulence, Phys. Fluids, 14, 5, 1781-1801, (2002) · Zbl 1185.76114
[15] Ducros, F.; Ferrand, V.; Nicoud, F.; Weber, C.; Darracq, D.; Gacherieu, C.; Poinsot, T., Large-eddy simulation of the shock/turbulence interaction, J. Comput. Phys., 152, 2, 517-549, (1999) · Zbl 0955.76045
[16] Freund, J. B., Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound, AIAA J., 35, 4, 740-742, (1997) · Zbl 0903.76081
[17] Garnier, E.; Sagaut, P.; Deville, M., Large eddy simulation of shock/homogeneous turbulence interaction, Comput. Fluids, 31, 2, 245-268, (2002) · Zbl 1059.76032
[18] Germano, M.; Piomelli, U.; Moin, P.; Cabot, W. H., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, Fluid Dyn., 3, 7, 1760-1765, (1991) · Zbl 0825.76334
[19] Ghosal, S., An analysis of numerical errors in large-eddy simulations of turbulence, J. Comput. Phys., 125, 1, 187-206, (1996) · Zbl 0848.76043
[20] Gottlieb, S.; Shu, C. W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 1, 89-112, (2001) · Zbl 0967.65098
[21] Hickel, S.; Egerer, C. P.; Larsson, J., Subgrid-scale modeling for implicit large eddy simulation of compressible flows and shock-turbulence interaction, Phys. Fluids, 26, 10, (2014)
[22] Hill, D. J.; Pullin, D. I., Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks, J. Comput. Phys., 194, 2, 435-450, (2004) · Zbl 1100.76030
[23] Hill, D. J.; Pantano, C.; Pullin, D. I., Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock, J. Fluid Mech., 557, 29-61, (2006) · Zbl 1094.76031
[24] Honein, A. E.; Moin, P., Higher entropy conservation and numerical stability of compressible turbulence simulations, J. Comput. Phys., 201, 2, 531-545, (2004) · Zbl 1061.76044
[25] Jamme, S.; Cazalbou, J.-B.; Torres, F.; Chassaing, P., Direct numerical simulation of the interaction between a shock wave and various types of isotropic turbulence, Flow Turbul. Combust., 68, 3, 227-268, (2002) · Zbl 1051.76576
[26] Jiménez, J., Hyperviscous vortices, J. Fluid Mech., 279, 169-176, (1994) · Zbl 0822.76001
[27] Kosović, B.; Pullin, D. I.; Samtaney, R., Subgrid-scale modeling for large-eddy simulations of compressible turbulence, Phys. Fluids, 14, 4, 1511-1522, (2002) · Zbl 1185.76208
[28] Larsson, J.; Lele, S. K., Direct numerical simulation of canonical shock/turbulence interaction, Phys. Fluids, 21, 12, (2009) · Zbl 1183.76296
[29] Larsson, J.; Bermejo-Moreno, I.; Lele, S. K., Reynolds- and Mach-number effects in canonical shock-turbulence interaction, J. Fluid Mech., 717, 293-321, (2013) · Zbl 1284.76241
[30] Lee, S.; Lele, S. K.; Moin, P., Direct numerical simulation of isotropic turbulence interacting with a weak shock wave, J. Fluid Mech., 251, 533-562, (1993)
[31] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 1, 16-42, (1992) · Zbl 0759.65006
[32] LeVeque, R. J., Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics, vol. 31, (2002), Cambridge University Press · Zbl 1010.65040
[33] Livescu, D.; Ryu, J., Vorticity dynamics after the shock-turbulence interaction, Shock Waves, 26, 3, 241-251, (2016)
[34] Lombardini, M.; Hill, D. J.; Pullin, D. I.; Meiron, D. I., Atwood ratio dependence of Richtmyer-Meshkov flows under reshock conditions using large-eddy simulations, J. Fluid Mech., 670, 439-480, (2011) · Zbl 1225.76183
[35] Lombardini, M.; Pullin, D. I.; Meiron, D. I., Transition to turbulence in shock-driven mixing: a Mach number study, J. Fluid Mech., 690, 203-226, (2012) · Zbl 1241.76250
[36] M. Lombardini, Richtmyer-Meshkov Instability in Converging Geometries, California Institute of Technology, 2008.
[37] Lundgren, T. S., Strained spiral vortex model for turbulent fine structure, Phys. Fluids, 25, 12, 2193-2203, (1982) · Zbl 0536.76034
[38] Mahesh, K., The interaction of a shock wave with a turbulent shear flow, (1996), Stanford University, PhD thesis
[39] Misra, A.; Pullin, D. I., A vortex-based subgrid stress model for large-eddy simulation, Phys. Fluids, 9, 8, 2443-2454, (1997) · Zbl 1185.76770
[40] F.K. Moore, Unsteady oblique interaction of a shock wave with a plane disturbance, NACA-TR-1165, 1954.
[41] Petersen, M. R.; Livescu, D., Forcing for statistically stationary compressible isotropic turbulence, Phys. Fluids, 22, 11, (2010)
[42] Ribner, H. S., Shock-turbulence interaction and the generation of noise, (1955), NACA-TR-1233
[43] Ryu, J.; Livescu, D., Turbulence structure behind the shock in canonical shock-vortical turbulence interaction, J. Fluid Mech., 756, R1, (2014)
[44] Samtaney, R.; Pullin, D. I.; Kosovic, B., Direct numerical simulation of decaying compressible turbulence and shocklet statistics, Phys. Fluids, 13, 5, 1415-1430, (2001) · Zbl 1184.76474
[45] Tantikul, T.; Domaradzki, J. A., Large eddy simulations using truncated Navier-Stokes equations with the automatic filtering criterion, J. Turbul., 11, N21, (2010) · Zbl 1273.76222
[46] Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazlewood, V.; Lathrop, S.; Lifka, D.; Peterson, G. D., XSEDE: accelerating scientific discovery, Comput. Sci. Eng., 16, 5, 62-74, (2014)
[47] Tritschler, V. K.; Olson, B. J.; Lele, S. K.; Hickel, S.; Hu, X. Y.; Adams, N. A., On the Richtmyer-Meshkov instability evolving from a deterministic multimode planar interface, J. Fluid Mech., 755, 429-462, (2014)
[48] Voelkl, T.; Pullin, D. I.; Chan, D. C., A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation, Phys. Fluids, 12, 7, 1810, (2000) · Zbl 1184.76575
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.