×

zbMATH — the first resource for mathematics

Off-shell amplitudes as boundary integrals of analytically continued Wilson line slope. (English) Zbl 1390.81333
Summary: One of the methods to calculate tree-level multi-gluon scattering amplitudes is to use the Berends-Giele recursion relation involving off-shell currents or off-shell amplitudes, if working in the light cone gauge. As shown in recent works using the light-front perturbation theory, solutions to these recursions naturally collapse into gauge invariant and gauge-dependent components, at least for some helicity configurations. In this work, we show that such structure is helicity independent and emerges from analytic properties of matrix elements of Wilson line operators, where the slope of the straight gauge path is shifted in a certain complex direction. This is similar to the procedure leading to the Britto-Cachazo-Feng-Witten (BCFW) recursion, however we apply a complex shift to the Wilson line slope instead of the external momenta. While in the original BCFW procedure the boundary integrals over the complex shift vanish for certain deformations, here they are non-zero and are equal to the off-shell amplitudes. The main result can thus be summarized as follows: we derive a decomposition of a helicity-fixed off-shell current into gauge invariant component given by a matrix element of a straight Wilson line plus a reminder given by a sum of products of gauge invariant and gauge dependent quantities. We give several examples realizing this relation, including the five-point next-to-MHV helicity configuration.

MSC:
81T13 Yang-Mills and other gauge theories in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bevilacqua, G.; Czakon, M.; Garzelli, MV; Hameren, A.; Kardos, A.; Papadopoulos, CG; etal., Helac-nlo, Comput. Phys. Commun., 184, 986, (2013)
[2] Alioli, S.; Bauer, CW; Berggren, C.; Tackmann, FJ; Walsh, JR; Zuberi, S., Matching fully differential NNLO calculations and parton showers, JHEP, 06, 089, (2014)
[3] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP07 (2003) 001 [hep-ph/0206293] [INSPIRE].
[4] Gleisberg, T.; Hoeche, S., Comix, a new matrix element generator, JHEP, 12, 039, (2008)
[5] Kleiss, R.; Oord, G., CAMORRA: a C++ library for recursive computation of particle scattering amplitudes, Comput. Phys. Commun., 182, 435, (2011) · Zbl 1219.82012
[6] Cafarella, A.; Papadopoulos, CG; Worek, M., Helac-phegas: A generator for all parton level processes, Comput. Phys. Commun., 180, 1941, (2009)
[7] Mangano, ML; Parke, SJ; Xu, Z., Duality and multi-gluon scattering, Nucl. Phys., B 298, 653, (1988)
[8] Mangano, ML; Parke, SJ, Multiparton amplitudes in gauge theories, Phys. Rept., 200, 301, (1991)
[9] Berends, FA; Giele, WT, Recursive calculations for processes with n gluons, Nucl. Phys., B 306, 759, (1988)
[10] Parke, SJ; Taylor, TR, An amplitude for n-gluon scattering, Phys. Rev. Lett., 56, 2459, (1986)
[11] Britto, R.; Cachazo, F.; Feng, B., New recursion relations for tree amplitudes of gluons, Nucl. Phys., B 715, 499, (2005) · Zbl 1207.81088
[12] Britto, R.; Cachazo, F.; Feng, B.; Witten, E., Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett., 94, 181602, (2005)
[13] Arkani-Hamed, N.; Kaplan, J., On tree amplitudes in gauge theory and gravity, JHEP, 04, 076, (2008) · Zbl 1246.81103
[14] Cachazo, F.; Svrček, P.; Witten, E., MHV vertices and tree amplitudes in gauge theory, JHEP, 09, 006, (2004)
[15] Catani, S.; Ciafaloni, M.; Hautmann, F., Gluon contributions to small χ heavy flavor production, Phys. Lett., B 242, 97, (1990)
[16] Catani, S.; Ciafaloni, M.; Hautmann, F., High-energy factorization and small-x heavy flavor production, Nucl. Phys., B 366, 135, (1991)
[17] Collins, JC; Ellis, RK, Heavy quark production in very high-energy hadron collisions, Nucl. Phys., B 360, 3, (1991)
[18] L.N. Lipatov, Gauge invariant effective action for high-energy processes in QCD, Nucl. Phys.B 452 (1995) 369 [hep-ph/9502308] [INSPIRE].
[19] Hameren, A.; Kotko, P.; Kutak, K., Helicity amplitudes for high-energy scattering, JHEP, 01, 078, (2013)
[20] Kotko, P., Wilson lines and gauge invariant off-shell amplitudes, JHEP, 07, 128, (2014)
[21] Hameren, A., BCFW recursion for off-shell gluons, JHEP, 07, 138, (2014)
[22] Kogut, JB; Soper, DE, Quantum electrodynamics in the infinite momentum frame, Phys. Rev., D 1, 2901, (1970)
[23] S.J. Brodsky, H.-C. Pauli and S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone, Phys. Rept.301 (1998) 299 [hep-ph/9705477] [INSPIRE].
[24] Motyka, L.; Stasto, AM, Exact kinematics in the small-x evolution of the color dipole and gluon cascade, Phys. Rev., D 79, 085016, (2009)
[25] Cruz-Santiago, CA; Stasto, AM, Recursion relations and scattering amplitudes in the light-front formalism, Nucl. Phys., B 875, 368, (2013) · Zbl 1282.81172
[26] Brodsky, SJ; Ji, C-R, Factorization property of the deuteron, Phys. Rev., D 33, 2653, (1986)
[27] Cruz-Santiago, C.; Kotko, P.; Stasto, AM, Scattering amplitudes in the light-front formalism, Prog. Part. Nucl. Phys., 85, 82, (2015) · Zbl 1329.81363
[28] Jin, Q.; Feng, B., Boundary operators of BCFW recursion relation, JHEP, 04, 123, (2016) · Zbl 1388.81084
[29] Feng, B.; Zhou, K.; Qiao, C.; Rao, J., Determination of boundary contributions in recursion relation, JHEP, 03, 023, (2015) · Zbl 1388.81741
[30] Jin, Q.; Feng, B., Recursion relation for boundary contribution, JHEP, 06, 018, (2015) · Zbl 1388.81914
[31] Feng, B.; Zhang, Z., Boundary contributions using fermion pair deformation, JHEP, 12, 057, (2011) · Zbl 1306.81101
[32] Cruz-Santiago, C.; Kotko, P.; Stasto, A., Recursion relations for multi-gluon off-shell amplitudes on the light-front and Wilson lines, Nucl. Phys., B 895, 132, (2015) · Zbl 1329.81363
[33] Kosower, DA, Light cone recurrence relations for QCD amplitudes, Nucl. Phys., B 335, 23, (1990)
[34] Bardeen, WA, Selfdual Yang-Mills theory, integrability and multiparton amplitudes, Prog. Theor. Phys. Suppl., 123, 1, (1996)
[35] Rosly, AA; Selivanov, KG, On amplitudes in selfdual sector of Yang-Mills theory, Phys. Lett., B 399, 135, (1997)
[36] Hameren, A.; Kotko, P.; Kutak, K., Multi-gluon helicity amplitudes with one off-shell leg within high energy factorization, JHEP, 12, 029, (2012)
[37] Hameren, A.; Serino, M., BCFW recursion for TMD parton scattering, JHEP, 07, 010, (2015)
[38] Yu. Makeenko and A.A. Migdal, Quantum Chromodynamics as Dynamics of Loops, Nucl. Phys.B 188 (1981) 269 [Yad. Fiz.32 (1980) 838] [INSPIRE].
[39] Makeenko, Y.; Olesen, P., The QCD scattering amplitude from area behaved Wilson loops, Phys. Lett., B 709, 285, (2012)
[40] Brandhuber, A.; Heslop, P.; Travaglini, G., MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys., B 794, 231, (2008) · Zbl 1273.81201
[41] Eden, B.; Heslop, P.; Korchemsky, GP; Sokatchev, E., The super-correlator/super-amplitude duality: part I, Nucl. Phys., B 869, 329, (2013) · Zbl 1262.81196
[42] Eden, B.; Heslop, P.; Korchemsky, GP; Sokatchev, E., The super-correlator/super-amplitude duality: part II, Nucl. Phys., B 869, 378, (2013) · Zbl 1262.81197
[43] Dixon, LJ; Hippel, M.; McLeod, AJ, The four-loop six-gluon NMHV ratio function, JHEP, 01, 053, (2016)
[44] Fadin, VS; Kuraev, EA; Lipatov, LN, On the pomeranchuk singularity in asymptotically free theories, Phys. Lett., B 60, 50, (1975)
[45] Balitsky, II; Lipatov, LN, The pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys., 28, 822, (1978)
[46] I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys.B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].
[47] Y.V. Kovchegov, Small x F_{2}structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev.D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].
[48] J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev.D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].
[49] E. Iancu, A. Leonidov and L.D. McLerran, The Renormalization group equation for the color glass condensate, Phys. Lett.B 510 (2001) 133 [hep-ph/0102009] [INSPIRE]. · Zbl 0977.81528
[50] V.S. Fadin and L.N. Lipatov, BFKL Pomeron in the next-to-leading approximation, Phys. Lett.B 429 (1998) 127 [hep-ph/9802290] [INSPIRE].
[51] Balitsky, I.; Chirilli, GA, Next-to-leading order evolution of color dipoles, Phys. Rev., D 77, 014019, (2008)
[52] Kovner, A.; Lublinsky, M.; Mulian, Y., NLO JIMWLK evolution unabridged, JHEP, 08, 114, (2014)
[53] M. Ciafaloni, D. Colferai, G.P. Salam and A.M. Stasto, Renormalization group improved small x Green’s function, Phys. Rev.D 68 (2003) 114003 [hep-ph/0307188] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.