×

An approximate likelihood perspective on ABC methods. (English) Zbl 1391.60003

Summary: We are living in the big data era, as current technologies and networks allow for the easy and routine collection of data sets in different disciplines. Bayesian Statistics offers a flexible modeling approach which is attractive for describing the complexity of these datasets. These models often exhibit a likelihood function which is intractable due to the large sample size, high number of parameters, or functional complexity. Approximate Bayesian Computational (ABC) methods provides likelihood-free methods for performing statistical inferences with Bayesian models defined by intractable likelihood functions. The vastity of the literature on ABC methods created a need to review and relate all ABC approaches so that scientists can more readily understand and apply them for their own work. This article provides a unifying review, general representation, and classification of all ABC methods from the view of approximate likelihood theory. This clarifies how ABC methods can be characterized, related, combined, improved, and applied for future research. Possible future research in ABC is then outlined.

MSC:

60-08 Computational methods for problems pertaining to probability theory
62F15 Bayesian inference
62G05 Nonparametric estimation
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Aandahl, R. Z., Reyes, J. F., Sisson, S. A. and Tanaka, M. M. (2012). A model-based Bayesian estimation of the rate of evolution of VNTR loci in Mycobacterium tuberculosis. PLoS Computational Biology8 e1002573.
[2] Abdessalem, A. B., Dervilis, N., Wagg, D. and Worden, K. (2018). Model selection and parameter estimation in structural dynamics using Approximate Bayesian Computation. Mechanical Systems and Signal Processing99 306-325.
[3] Aeschbacher, S., Beaumont, M. A. and Futschik, A. (2012). A novel approach for choosing summary statistics in Approximate Bayesian Computation. Genetics192 1027-1047.
[4] Akeret, J., Refregier, A., Amara, A., Seehars, S. and Hasner, C. (2015). Approximate Bayesian computation for forward modeling in cosmology. Journal of Cosmology and Astroparticle Physics2015 043.
[5] Albert, C., Künsch, H. R. and Scheidegger, A. (2015). A simulated annealing approach to approximate Bayes computations. Statistics and Computing25 1217-1232. · Zbl 1331.65026
[6] Allingham, D., King, R. A. R. and Mengersen, K. L. (2009). Bayesian estimation of quantile distributions. Statistics and Computing19 189-201.
[7] Anderson, C. N. K., Ramakrishnan, U., Chan, Y. L. and Hadly, E. A. (2005). Serial SimCoal: A population genetics model for data from multiple populations and points in time. Bioinformatics21 1733-1734.
[8] Andrade, P. and Rifo, L. (2017). Long-range dependence and Approximate Bayesian Computation. Communications in Statistics: Simulation and Computation46 1219-1237. · Zbl 1361.60024
[9] Andrieu, C. and Roberts, G. O. (2009). The pseudo-marginal approach for efficient Monte Carlo computations. Annals of Statistics37 697-725. · Zbl 1185.60083
[10] Ascunce, M. S., Yang, C. C., Oakey, J., Calcaterra, L., Wu, W. J., Shih, C. J., Goudet, J., Ross, K. G. and Shoemaker, D. (2011). Global invasion history of the fire ant Solenopsis invicta. Science331 1066-1068.
[11] Baragatti, M., Grimaud, A. and Pommeret, D. (2013). Likelihood-free parallel tempering. Statistics and Computing23 535-549. · Zbl 1325.62007
[12] Baragatti, M. and Pudlo, P. (2014). An overview on Approximate Bayesian Computation. ESAIM: Proceedings44 291-299. · Zbl 1338.65022
[13] Barber, S., Voss, J. and Webster, M. (2015). The rate of convergence for Approximate Bayesian Computation. Electronic Journal of Statistics9 80-105. · Zbl 1307.62063
[14] Barnes, C. P., Silk, D. and Stumpf, M. P. H. (2011). Bayesian design strategies for synthetic biology. Interface Focus1 895-908.
[15] Barthelmé, S. and Chopin, N. (2011). ABC-EP: Expectation propagation for likelihood free Bayesian computation. In Proceedings of the 28th International Conference on Machine Learning (L. Getoor and T. Scheffer, eds.) 289-296. Omnipress, Madison, WI.
[16] Barthelmé, S. and Chopin, N. (2014). Expectation propagation for likelihood-free inference. Journal of the American Statistical Association109 315-333. · Zbl 1367.62063
[17] Baudet, C., Donati, B., Sinaimeri, B., Crescenzi, P., Gautier, C., Matias, C. and Sagot, M. F. (2014). Cophylogeny reconstruction via an Approximate Bayesian Computation. Systematic Biology64 416-431.
[18] Bazin, E., Dawson, K. J. and Beaumont, M. A. (2010). Likelihood-free inference of population structure and local adaptation in a Bayesian hierarchical model. Genetics185 587-602.
[19] Beaumont, M. A. (2003). Estimation of population growth or decline in genetically monitored populations. Genetics164 1139-1160.
[20] Beaumont, M. A. (2008). Joint determination of topology, divergence time, and immigration in population trees. In Simulation, Genetics and Human Prehistory (S. Matsumura, P. Forster and C. Renfrew, eds.) 134-154. McDonald Institute for Archaeological Research, Cambridge.
[21] Beaumont, M. A. (2010). Approximate Bayesian Computation in evolution and ecology. Annual Review of Ecology, Evolution and Systematics41 379-406.
[22] Beaumont, M. A. and Rannala, B. (2004). The Bayesian revolution in genetics. Nature Reviews Genetics5 251.
[23] Beaumont, M. A., Zhang, W. and Balding, D. J. (2002). Approximate Bayesian Computation in population genetics. Genetics162 2025-2035.
[24] Beaumont, M. A., Cornuet, J. M., Marin, J. M. and Robert, C. P. (2009). Adaptive Approximate Bayesian Computation. Biometrika96 983-990. · Zbl 1437.62393
[25] Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton. · Zbl 0103.12901
[26] Bennett, K. L., Shija, F., Linton, Y. M., Misinzo, G., Kaddumukasa, M., Djouaka, R., Anyaele, O., Harris, A., Irish, S., Hlaing, T., Prakash, A., Lutwama, J. and Walton, C. (2016). Historical environmental change in Africa drives divergence and admixture of Aedes aegypti mosquitoes: A precursor to successful worldwide colonization? Molecular Ecology25 4337-4354.
[27] Bernardo, J. M. and Smith, A. F. M. (1994). Bayesian Theory. Wiley, Chichester, England.
[28] Bertorelle, G., Benazzo, A. and Mona, S. (2010). ABC as a flexible framework to estimate demography over space and time: Some cons, many pros. Molecular Ecology19 2609-2625.
[29] Biau, G., Cérou, F. and Guyader, A. (2015). New insights into Approximate Bayesian Computation. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques51 376-403.
[30] Blei, D. M., Kucukelbir, A. and McAuliffe, J. D. (2017). Variational Inference: A Review for Statisticians. Journal of the American Statistical Association112 859-877.
[31] Blum, M. G. B. (2010). Approximate Bayesian Computation: A nonparametric perspective. Journal of the American Statistical Association105 1178-1187. · Zbl 1390.62052
[32] Blum, M. G. B. and François, O. (2010). Non-linear regression models for Approximate Bayesian Computation. Statistics and Computing20 63-73.
[33] Blum, M. G. B. and Jakobsson, M. (2010). Deep divergences of human gene trees and models of human origins. Molecular Biology and Evolution28 889-898.
[34] Blum, M. G. B. and Tran, V. C. (2010). HIV with contact tracing: A case study in Approximate Bayesian Computation. Biostatistics11 644-660.
[35] Blum, M. G. B., Nunes, M. A., Prangle, D. and Sisson, S. A. (2013). A comparative review of dimension reduction methods in Approximate Bayesian Computation. Statistical Science28 189-208. · Zbl 1331.62123
[36] Bonhomme, M., Blancher, A., Cuartero, S., Chikhi, L. and Crouau-Roy, B. (2008). Origin and number of founders in an introduced insular primate: Estimation from nuclear genetic data. Molecular Ecology17 1009-1019.
[37] Boos, D. D. and Monahan, J. F. (1986). Bootstrap methods using prior information. Biometrika73 77-83.
[38] Bornn, L., Pillai, N. S., Smith, A. and Woodard, D. (2017). The use of a single pseudo-sample in approximate Bayesian computation. Statistics and Computing27 583-590. · Zbl 06737685
[39] Bortot, P., Coles, S. G. and Sisson, S. A. (2007). Inference for stereological extremes. Journal of the American Statistical Association102 84-92. · Zbl 1284.62795
[40] Bray, T. C., Sousa, V. C., Parreira, B., Bruford, M. W. and Chikhi, L. (2010). 2BAD: An application to estimate the parental contributions during two independent admixture events. Molecular Ecology Resources10 538-541.
[41] Breiman, L. (1996). Bagging Predictors. Machine Learning26 123-140. · Zbl 0858.68080
[42] Breiman, L. (2001). Random forests. Machine Learning45 5-32. · Zbl 1007.68152
[43] Breiman, L., Friedman, J., Stone, C. J. and Olshen, R. A. (1984). Classification and Regression Trees. CRC press, Boca Raton, FL. · Zbl 0541.62042
[44] Brooks, S., Gelman, A., Jones, G. and Meng, X. L. (2011). Handbook of Markov Chain Monte Carlo. Chapman and Hall/CRC, Boca Raton, FL. · Zbl 1218.65001
[45] Burr, T. and Skurikhin, A. (2013). Selecting summary statistics in Approximate Bayesian Computation for calibrating stochastic models. BioMed Research International2013 1-10.
[46] Buzbas, E. O. and Rosenberg, N. A. (2015). AABC: Approximate Approximate Bayesian Computation for inference in population-genetic models. Theoretical Population Biology99 31-42. · Zbl 1331.92011
[47] Béchaux, C., Bodin, L., Clémençon, S. and Crépet, A. (2014). PBPK and population modelling to interpret urine cadmium concentrations of the French population. Toxicology and Applied Pharmacology279 364-372.
[48] Cabras, S., Nueda, M. E. C. and Ruli, E. (2015). Approximate Bayesian Computation by modelling summary statistics in a quasi-likelihood framework. Bayesian Analysis10 411-439. · Zbl 1335.62041
[49] Calvet, L. E. and Czellar, V. (2014). Accurate methods for approximate Bayesian computation filtering. Journal of Financial Econometrics13 798-838.
[50] Cameron, E. and Pettitt, A. N. (2012). Approximate Bayesian Computation for astronomical model analysis: A case study in galaxy demographics and morphological transformation at high redshift. Monthly Notices of the Royal Astronomical Society425 44-65.
[51] Cappé, O., Guillin, A., Marin, J. M. and Robert, C. P. (2004). Population Monte Carlo. Journal of Computational and Graphical Statistics13 907-929.
[52] Chiachio, M., Beck, J. L., Chiachio, J. and Rus, G. (2014). Approximate Bayesian Computation by subset simulation. SIAM Journal on Scientific Computing36 1339-1358. · Zbl 1297.65013
[53] Cornuet, J. M., Ravigné, V. and Estoup, A. (2010). Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinformatics11 401.
[54] Cornuet, J. M., Santos, F., Beaumont, M. A., Robert, C. P., Marin, J. M., Balding, D. J., Guillemaud, T. and Estoup, A. (2008). Inferring population history with DIY ABC: A user-friendly approach to Approximate Bayesian Computation. Bioinformatics24 2713-2719.
[55] Cornuet, J. M., Marin, J. M., Mira, A. and Robert, C. P. (2012). Adaptive multiple importance sampling. Scandinavian Journal of Statistics39 798-812. · Zbl 1319.62059
[56] Cornuet, J. M., Pudlo, P., Veyssier, J., Dehne-Garcia, A., Gautier, M., Leblois, R., Marin, J. M. and Estoup, A. (2014). DIYABC v2.0: A software to make Approximate Bayesian Computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics30 1187-1189.
[57] Crackel, R. and Flegal, J. (2017). Bayesian inference for a flexible class of bivariate beta distributions. Journal of Statistical Computation and Simulation87 295-312.
[58] Craig, P. S., Goldstein, M., Seheult, A. H. and Smith, J. A. (1997). Pressure matching for hydrocarbon reservoirs: A case study in the use of Bayes linear strategies for large computer experiments. In Case Studies in Bayesian Statistics (C. Gatsonis, J. S. Hodges, R. E. Kass, R. McCulloch, P. Rossi and N. D. Singpurwalla, eds.) 37-93. Springer, New York. · Zbl 0895.62105
[59] Creel, M. and Kristensen, D. (2016). On selection of statistics for Approximate Bayesian computing (or the method of simulated moments). Computational Statistics and Data Analysis100 99-114. · Zbl 1466.62049
[60] Crema, E. R., Edinborough, K., Kerig, T. and Shennan, S. J. (2014). An Approximate Bayesian Computation approach for inferring patterns of cultural evolutionary change. Journal of Archaeological Science50 160-170.
[61] Csilléry, K., François, O. and Blum, M. G. B. (2012). abc: An R package for Approximate Bayesian Computation (ABC). Methods in Ecology and Evolution3 475-479.
[62] Csilléry, K., Blum, M. G. B., Gaggiotti, O. E. and François, O. (2010). Approximate Bayesian Computation (ABC) in practice. Trends in Ecology and Evolution25 410-418.
[63] Cussens, J. (2011). Approximate Bayesian Computation for the parameters of PRISM programs. In Inductive Logic Programming: 20th International Conference, ILP 2010 (P. Frasconi and F. A. Lisi, eds.) 38-46. Springer, Berlin. · Zbl 1329.68211
[64] Davison, A. C., Hinkley, D. V. and Worton, B. J. (1992). Bootstrap likelihoods. Biometrika79 113-130. · Zbl 0753.62026
[65] Dean, T. A. and Singh, S. S. (2011). Asymptotic behaviour of approximate Bayesian estimators. ArXiv e-print 1105.3655.
[66] DelMoral, P., Doucet, A. and Jasra, A. (2006). Sequential Monte Carlo samplers. Journal of the Royal Statistics Society, Series B68 411-436. · Zbl 1105.62034
[67] DelMoral, P., Doucet, A. and Jasra, A. (2012). An adaptive sequential Monte Carlo method for Approximate Bayesian Computation. Statistics and Computing22 1009-1020. · Zbl 1252.65025
[68] Didelot, X., Everitt, R. G., Johansen, A. M. and Lawson, D. J. (2011). Likelihood-free estimation of model evidence. Bayesian Analysis6 49-76. · Zbl 1330.62118
[69] Diggle, P. J. and Gratton, R. J. (1984). Monte Carlo methods of inference for implicit statistical models. Journal of the Royal Statistical Society, Series B46 193-227. · Zbl 0561.62035
[70] Dimitrakakis, C. and Tziortziotis, N. (2013). ABC Reinforcement Learning. In Proceedings of the 30th International Conference on Machine Learning (ICML 3) (S. Dasgupta and D. McAllester, eds.) 684-692.
[71] Doksum, K. A. and Lo, A. Y. (1990). Consistent and robust Bayes procedures for location based on partial information. Annals of Statistics18 443-453. · Zbl 0701.62043
[72] Drovandi, C. C. (2017). Approximate Bayesian Computation. In Wiley StatsRef: Statistics Reference Online (N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri and J. L. Teugels, eds.) 1-9. Wiley, Hoboken, New Jersey.
[73] Drovandi, C. C. and Pettitt, A. N. (2011). Likelihood-free Bayesian estimation of multivariate quantile distributions. Computational Statistics and Data Analysis55 2541-2556. · Zbl 1464.62062
[74] Drovandi, C. C., Pettitt, A. N. and Faddy, M. J. (2011). Approximate Bayesian Computation using indirect inference. Journal of the Royal Statistical Society, Series C60 317-337.
[75] Drovandi, C. C. and Pettitt, A. N. (2011b). Estimation of parameters for macroparasite population evolution using Approximate Bayesian Computation. Biometrics67 225-233. · Zbl 1217.62128
[76] Drovandi, C. C. and Pettitt, A. N. (2013). Bayesian experimental design for models with intractable likelihoods. Biometrics69 937-948. · Zbl 1419.62182
[77] Drovandi, C. C., Pettitt, A. N. and Lee, A. (2015). Bayesian indirect inference using a parametric auxiliary model. Statistical Science30 72-95. · Zbl 1332.62088
[78] Drovandi, C. C., Graziany, C., Mengersen, K. and Robert, C. (2018). Approximating the Likelihood in Approximate Bayesian Computation. In Handbook of Approximate Bayesian Computation (S. A. Sisson, Y. Fan and M. A. Beaumont, eds.) na-na. Chapman and Hall/CRC Press, Boca Raton, Florida.
[79] Efron, B. and Tibshiriani, R. J. (1993). An Introduction to the Bootstrap. Chapman and Hall/CRC, Boca Raton, FL.
[80] Erhardt, R. and Sisson, S. A. (2016). Modelling extremes using Approximate Bayesian Computation. In Extreme Value Modeling and Risk Analysis: Methods and Applications (D. K. Dey and J. Yan, eds.) 281-306. Chapman and Hall/CRC Press, Boca Raton, FL. · Zbl 1365.62177
[81] Erhardt, R. J. and Smith, R. L. (2012). Approximate Bayesian computing for spatial extremes. Computational Statistics and Data Analysis56 1468-1481. · Zbl 1246.65023
[82] Estoup, A. and Guillemaud, T. (2010). Reconstructing routes of invasion using genetic data: Why, how and so what? Molecular Ecology19 4113-4130.
[83] Estoup, A., Beaumont, M., Sennedot, F., Moritz, C. and Cornuet, J. M. (2004). Genetic analysis of complex demographic scenarios: Spatially expanding populations of the cane toad, Bufo marinus. Evolution58 2021-2036.
[84] Estoup, A., Lombaert, E., Marin, J. M., Guillemaud, T., Pudlo, P., Robert, C. P. and Cornuet, J. M. (2012). Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics. Molecular Ecology Resources12 846-855.
[85] Estoup, A., Verdu, P., Marin, J. M., Robert, C. P., Dehne-Garcia, A., Corunet, J. M. and Pudlo, P. (2018). Application of Approximate Bayesian Computation to infer the genetic history of Pygmy hunter-gatherers populations from West Central Africa. In Handbook of Approximate Bayesian Computation (S. A. Sisson, Y. Fan and M. A. Beaumont, eds.) na-na. Chapman and Hall/CRC Press, Boca Raton, Florida.
[86] Fagundes, N. J. R., Ray, N., Beaumont, M., Neuenschwander, S., Salzano, F. M., Bonatto, S. L. and Excoffier, L. (2007). Statistical evaluation of alternative models of human evolution. Proceedings of the National Academy of Sciences104 17614-17619.
[87] Fan, H. H. and Kubatko, L. S. (2011). Estimating species trees using Approximate Bayesian Computation. Molecular Phylogenetics and Evolution59 354-363.
[88] Fan, Y., Nott, D. J. and Sisson, S. A. (2013). Approximate Bayesian computation via regression density estimation. Stat2 34-48.
[89] Fan, Y., Meikle, S. R., Angelis, G. and Sitek, A. (2018). ABC in nuclear imaging. In Handbook of Approximate Bayesian Computation (S. A. Sisson, Y. Fan and M. A. Beaumont, eds.) na-na. Chapman and Hall/CRC Press, Boca Raton, Florida.
[90] Fasiolo, M. and Wood, S. N. (2018). ABC in ecological modelling. In Handbook of Approximate Bayesian Computation (S. A. Sisson, Y. Fan and M. A. Beaumont, eds.) na-na. Chapman and Hall/CRC Press, Boca Raton, Florida.
[91] Fay, D., Moore, A. W., Brown, K., Filosi, M. and Jurman, G. (2015). Graph metrics as summary statistics for Approximate Bayesian Computation with application to network model parameter estimation. Journal of Complex Networks3 52-83.
[92] Fearnhead, P. and Prangle, D. (2012). Constructing summary statistics for Approximate Bayesian Computation: Semi-automatic Approximate Bayesian Computation. Journal of the Royal Statistical Society, Series B74 419-474. · Zbl 1411.62057
[93] Filippi, S. (2013). On optimality of kernels for Approximate Bayesian Computation using sequential Monte Carlo. Statistical Applications in Genetics and Molecular Biology12 87-107.
[94] Foll, M., Beaumont, M. A. and Gaggiotti, O. (2008). An approximate Bayesian computation approach to overcome biases that arise when using amplified fragment length polymorphism markers to study population structure. Genetics179 927-939.
[95] Forneron, J. J. and Ng, S. (2018). The ABC of simulation estimation with auxiliary statistics. Journal of Econometricsna na-na. · Zbl 1452.62905
[96] François, O. and Laval, G. (2011). Deviance information criteria for model selection in Approximate Bayesian Computation. Statistical Applications in Genetics and Molecular Biology10 1-25. · Zbl 1452.62905
[97] Fu, Y. X. and Li, W. H. (1997). Estimating the age of the common ancestor of a sample of DNA sequences. Molecular Biology and Evolution14 195-199. · Zbl 1296.92034
[98] Gallant, A. R. and McCulloch, R. E. (2009). On the determination of general scientific models with application to asset pricing. Journal of the American Statistical Association104 117-131. · Zbl 1390.62334
[99] Ghurye, S. G. and Olkin, I. (1969). Unbiased estimation of some multivariate probability densities and related functions. The Annals of Mathematical Statistics40 1261-1271. · Zbl 1390.62334
[100] Golchi, S. and Campbell, D. A. (2016). Sequentially Constrained Monte Carlo. Computational Statistics and Data Analysis97 98-113. · Zbl 0202.17103
[101] Gourieroux, C., Monfort, A. and Renault, E. (1993). Indirect Inference. Journal of Applied Econometrics8 S85-S118. · Zbl 1448.62202
[102] Grazian, C. and Liseo, B. (2015). Approximate integrated likelihood via ABC methods. Statistics and Its Interface8 161-171. · Zbl 1405.62029
[103] Grazian, C. and Liseo, B. (2015). Approximate Bayesian Computation for copula estimation. Statistica75 111-127. · Zbl 1405.62029
[104] Grazian, C. and Liseo, B. (2017a). Approximate Bayesian inference in semiparametric copula models. Bayesian Analysis12 991-1016. · Zbl 1448.62202
[105] Grazian, C. and Liseo, B. (2017b). Approximate Bayesian Methods for Multivariate and Conditional Copulae In Soft Methods for Data Science 261-268. Springer International Publishing, Cham. · Zbl 1405.62029
[106] Grelaud, A., Robert, C. P., Marin, J. M., Rodolphe, F. and Taly, J. F. (2009). ABC likelihood-free methods for model choice in Gibbs random fields. Bayesian Analysis4 317-335. · Zbl 1405.62029
[107] Groendyke, C. and Welch, D. (2018). epinet: An R package to analyze epidemics spread across contact networks. Journal of Statistical Software83 1-22. · Zbl 1384.62167
[108] Gutmann, M. U. and Corander, J. (2016). Bayesian optimization for likelihood-free inference of simulator-based statistical models. Journal of Machine Learning Research17 1-47. · Zbl 1384.62167
[109] Hainy, M., Müller, W. G. and Wagner, H. (2016). Likelihood-free simulation-based optimal design with an application to spatial extremes. Stochastic Environmental Research and Risk Assessment30 481-492. · Zbl 1330.62126
[110] Hamilton, G., Currat, M., Ray, N., Heckel, G., Beaumont, M. and Excoffier, L. (2005). Bayesian estimation of recent migration rates after a spatial expansion. Genetics170 409-417.
[111] Hartig, F., Calabrese, J. M., Reineking, B., Wiegand, T. and Huth, A. (2011). Statistical inference for stochastic simulation models - theory and application. Ecology Letters14 816-827. · Zbl 1392.62072
[112] Heggland, K. and Frigessi, A. (2004). Estimating functions in indirect inference. Journal of the Royal Statistical Society, Series B66 447-462. · Zbl 1062.62098
[113] Hickerson, M. J., Stahl, E. A. and Lessios, H. A. (2006). Test for simultaneous divergence using Approximate Bayesian Computation. Evolution60 2435-2453.
[114] Hickerson, M. J., Stahl, E. and Takebayashi, N. (2007). msBayes: Pipeline for testing comparative phylogeographic histories using hierarchical Approximate Bayesian Computation. BMC Bioinformatics8 268.
[115] Holden, P. B., Edwards, N. R., Hensman, J. and Wilkinson, R. D. (2018). ABC for climate: Dealing with expensive simulators. In Handbook of Approximate Bayesian Computation (S. A. Sisson, Y. Fan and M. A. Beaumont, eds.) na-na. Chapman and Hall/CRC Press, Boca Raton, Florida. · Zbl 1062.62098
[116] Holmes, C. C. and Mallick, B. K. (2003). Generalized nonlinear modeling with multivariate free-knot regression splines. Journal of the American Statistical Association98 352-368. · Zbl 1041.62059
[117] Huang, W., Takebayashi, N., Qi, Y. and Hickerson, M. J. (2011). MTML-msBayes: Approximate Bayesian comparative phylogeographic inference from multiple taxa and multiple loci with rate heterogeneity. BMC Bioinformatics12 1-14.
[118] Hyrien, O., Mayer-Pröschel, M., Noble, M. and Yakovlev, A. (2005). A stochastic model to analyze clonal data on multi-type cell populations. Biometrics61 199-207. · Zbl 1077.62110
[119] Ilves, K. L., Huang, W., Wares, J. P. and Hickerson, M. J. Colonization and/or mitochondrial selective sweeps across the North Atlantic intertidal assemblage revealed by multi-taxa Approximate Bayesian Computation. Molecular Ecology19 4505-4519. · Zbl 1041.62059
[120] Ishida, E. E. O., Vitenti, S. D. P., Penna-Lima, M., Cisewski, J., de Souza, R. S., Trindade, A. M. M., Cameron, E. and Busti, V. C. (2015). cosmoabc: Likelihood-free inference via population Monte Carlo Approximate Bayesian Computation. Astronomy and Computing13 1-11.
[121] Jabot, F. and Chave, J. (2011). Analyzing tropical forest tree species abundance distributions using a nonneutral model and through approximate Bayesian inference. The American Naturalist178 E37-E47. · Zbl 1077.62110
[122] Jabot, F., Faure, T. and Dumoulin, N. (2013). EasyABC: Performing efficient Approximate Bayesian Computation sampling schemes using R. Methods in Ecology and Evolution4 684-687.
[123] Jabot, F., Lagarrigues, G., Courbaud, B. and Dumoulin, N. (2014). A comparison of emulation methods for Approximate Bayesian Computation. ArXiv e-print 1412.7560.
[124] Jakobsson, M., Hagenblad, J., Tavaré, S., Säll, T., Halldén, C., Lind-Halldén, C. and Nordborg, M. (2006). A unique recent origin of the allotetraploid species Arabidopsis suecica: Evidence from nuclear DNA markers. Molecular Biology and Evolution23 1217-1231.
[125] Jasra, A. (2015). Approximate Bayesian Computation for a class of time series models. International Statistical Review83 405-435.
[126] Jasra, A., Kantas, N. and Ehrlich, E. (2014). Approximate inference for observation-driven time series models with intractable likelihoods. ACM Transactions on Modeling and Computer Simulation24 13:1-13:25. · Zbl 1322.65011
[127] Jasra, A., Singh, S. S., Martin, J. S. and McCoy, E. (2012). Filtering via Approximate Bayesian Computation. Statistics and Computing22 1223-1237. · Zbl 1252.62093
[128] Jennings, E. and Madigan, M. (2017). astroABC : An Approximate Bayesian Computation Sequential Monte Carlo sampler for cosmological parameter estimation. Astronomy and Computing19 16-22.
[129] Jiang, W. and Turnbull, B. (2004). The indirect method: Inference based on intermediate statistics: A synthesis and examples. Statistical Science19 239-263. · Zbl 1322.65011
[130] Jiang, B., Wu, T. Y., Zheng, C. and Wong, W. H. (2015). Learning summary statistic for Approximate Bayesian Computation via deep neural network. ArXiv e-print 1510.02175. · Zbl 1252.62093
[131] Jobin, M. J. and Mountain, J. L. (2008). REJECTOR: Software for population history inference from genetic data via a rejection algorithm. Bioinformatics24 2936-2937.
[132] Johnston, S. T., Simpson, M. J., McElwain, D. L. S., Binder, B. J. and Ross, J. V. (2014). Interpreting scratch assays using pair density dynamics and Approximate Bayesian Computation. Open biology4 140097. · Zbl 1100.62025
[133] Jones, D. R. (2001). A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization21 345-383. · Zbl 1392.62073
[134] Joyce, P. and Marjoram, P. (2008). Approximately sufficient statistics and Bayesian computation. Statistical Applications in Genetics and Molecular Biology7 1-16. · Zbl 1276.62077
[135] Kacprzak, T., Herbel, J., Amara, A. and Réfrégier, A. (2018). Accelerating Approximate Bayesian Computation with quantile regression: Application to cosmological redshift distributions. Journal of Cosmology and Astroparticle Physics2018 042.
[136] Kangasrääsiö, A., Athukorala, K., Howes, A., Corander, J., Kaski, S. and Oulasvirta, A. (2017). Inferring cognitive models from data using Approximate Bayesian Computation. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems 1295-1306. · Zbl 1172.90492
[137] Karabatsos, G. (2017, in press). On Bayesian testing of additive conjoint measurement axioms using synthetic likelihood. Psychometrika83 231-332. · Zbl 1276.62077
[138] Kilbinger, M., Benabed, K., Cappe, O., Cardoso, J. F., Coupon, J., Fort, G., McCracken, H. J., Prunet, S., Robert, C. P. and Wraith, D. (2011). CosmoPMC: Cosmology Population Monte Carlo. ArXiv e-print 1101.0950.
[139] Kim, J. Y. (2002). Limited information likelihood and Bayesian analysis. Journal of Econometrics107 175-193. · Zbl 1030.62016
[140] Kobayashi, G. (2014). A transdimensional Approximate Bayesian Computation using the pseudo-marginal approach for model choice. Computational Statistics and Data Analysis80 167-183. · Zbl 06984085
[141] Kolmogorov, A. (1942). Definitions of center of dispersion and measure of accuracy from a finite number of observations. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya6 3-32.
[142] Kousathanas, A., Leuenberger, C., Helfer, J., Quinodoz, M., Foll, M. and Wegmann, D. (2016). Likelihood-Free Inference in High-Dimensional Models. Genetics203 893-904. · Zbl 1030.62016
[143] Koutroumpas, K., Ballarini, P., Votsi, I. and Cournède, P. H. (2016). Bayesian parameter estimation for the Wnt pathway: An infinite mixture models approach. Bioinformatics32 i781-i789.
[144] Krishnanathan, K., Anderson, S. R., Billings, S. A. and Kadirkamanathan, V. (2016). Computational system identification of continuous-time nonlinear systems using Approximate Bayesian Computation. International Journal of Systems Science47 3537-3544. · Zbl 1346.93389
[145] Kwan, Y. K. (1999). Asymptotic Bayesian analysis based on a limited information estimator. Journal of Econometrics88 99-121. · Zbl 0933.62019
[146] Kypraios, T., Neal, P. and Prangle, D. (2017). A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation. Mathematical Biosciences287 42-53. · Zbl 1377.92091
[147] Lagarrigues, G., Jabot, F., Lafond, V. and Courbaud, B. (2015). Approximate Bayesian Computation to recalibrate individual-based models with population data: Illustration with a forest simulation model. Ecological Modelling306 278-286.
[148] Lee, A., Andrieu, C. and Doucet, A. (2012). Discussion of constructing summary statistics for Approximate Bayesian Computation: Semi-automatic approximate Bayesian computation. Journal of the Royal Statistical Society, Series B74 449-450. · Zbl 1346.93389
[149] Lee, A. and Latuszynski, K. (2014). Variance bounding and geometric ergodicity of Markov chain Monte Carlo kernels for Approximate Bayesian Computation. Biometrika101 655-671. · Zbl 0933.62019
[150] Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation (2nd Ed.). Springer-Verlag, New York. · Zbl 1377.92091
[151] Lenive, O., Kirk, P. D. W. and Stumpf, M. P. H. (2016). Inferring extrinsic noise from single-cell gene expression data using Approximate Bayesian Computation. BMC Systems Biology10 81.
[152] Lenormand, M., Jabot, F. and Deffuant, G. (2013). Adaptive Approximate Bayesian Computation for complex models. Computational Statistics28 2777-2796. · Zbl 1306.65088
[153] Lewis, A. and Bridle, A. (2002). Cosmological parameters from CMB and other data: A Monte Carlo approach. Physical Review D66 103511. · Zbl 1334.60149
[154] Li, W. and Fearnhead, P. (2016). Improved convergence of regression adjusted Approximate Bayesian Computation. ArXiv preprint 1609.07135. · Zbl 0916.62017
[155] Li, W. and Fearnhead, P. (2018, in press). On the asymptotic efficiency of approximate Bayesian computation estimators. Biometrikana na-na. · Zbl 07072413
[156] Li, J., Nott, D. J., Fan, Y. and Sisson, S. A. (2017). Extending Approximate Bayesian Computation methods to high dimensions via a Gaussian copula model. Computational Statistics and Data Analysis106 77-89. · Zbl 1306.65088
[157] Liang, F., Kim, J. and Song, Q. (2016). A bootstrap Metropolis-Hastings Algorithm for Bayesian analysis of big data. Technometrics58 304-318.
[158] Liepe, J. and Stumpf, M. P. H. (2018). ABC in systems biology. In Handbook of Approximate Bayesian Computation (S. A. Sisson, Y. Fan and M. A. Beaumont, eds.) na-na. Chapman and Hall/CRC Press, Boca Raton, Florida.
[159] Liepe, J., Barnes, C., Cule, E., Erguler, K., Kirk, P., Toni, T. and Stumpf, M. P. H. (2010). ABC-SysBio: Approximate Bayesian Computation in Python with GPU support. Bioinformatics26 1797-1799.
[160] Liepe, J., Taylor, H., Barnes, C. P., Huvet, M., Bugeon, L., Thorne, T., Lamb, J. R., Dallman, M. J. and Stumpf, M. P. H. (2012). Calibrating spatio-temporal models of leukocyte dynamics against in vivo live-imaging data using Approximate Bayesian Computation. Integrative Biology4 335-345.
[161] Lintusaari, J., Gutmann, M. U., Dutta, R., Kaski, S. and Corander, J. (2017). Fundamentals and recent developments in Approximate Bayesian Computation. Systematic Biology66 e66.
[162] Liu, J. S. (2001). Monte Carlo Strategies In Scientific Computing. Springer, New York. · Zbl 0991.65001
[163] Lombaert, E., Guillemaud, T., Thomas, C. E., Handley, L. J. L., Li, J., Wang, S., Pang, H., Goryacheva, I., Zakharov, I. A., Jousselin, E., Poland, R. L., Migeon, A., Lenteren, J. V., Clercq, P. D., Berkvens, N., Jones, W. and Estoup, A. (2011). Inferring the origin of populations introduced from a genetically structured native range by Approximate Bayesian Computation: Case study of the invasive ladybird Harmonia axyridis. Molecular Ecology20 4654-4670.
[164] Lopes, J. S., Balding, D. and Beaumont, M. A. (2009). PopABC: A program to infer historical demographic parameters. Bioinformatics25 2747-2749.
[165] Luciani, F., Sisson, S. A., Jiang, H., Francis, A. R. and Tanaka, M. M. (2009). The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences106 14711-14715.
[166] Lyne, A. M., Girolami, M., Atchadé, Y., Strathmann, H. and Simpson, D. (2015). On Russian roulette estimates for Bayesian inference with doubly-intractable likelihoods. Statistical Science30 443-467. · Zbl 0991.65001
[167] MacGillivray, H. L. (1986). Skewness and asymmetry: Measures and orderings. Annals of Statistics14 994-1011. · Zbl 0604.62011
[168] MacGillivray, H. L. (1992). Shape properties of the g-and-h and Johnson families. Communications in Statistics, Theory and Methods21 1233-1250. · Zbl 0800.62062
[169] Mardulyn, P., Goffredo, M., Conte, A., Hendrickx, G., Meiswinkel, R., Balenghien, T., Sghaier, S., Lohr, Y. and Gilbert, M. (2013). Climate change and the spread of vector-borne diseases: Using Approximate Bayesian Computation to compare invasion scenarios for the bluetongue virus vector Culicoides imicola in Italy. Molecular Ecology22 2456-2466.
[170] Marin, J. M., Pudlo, P., Robert, C. P. and Ryder, R. J. (2012). Approximate Bayesian Computational methods. Statistics and Computing22 1167-1180. · Zbl 1252.62022
[171] Marin, J. M., Pillai, N. S., Robert, C. P. and Rousseau, J. (2014). Relevant statistics for Bayesian model choice. Journal of the Royal Statistical Society, Series B76 833-859. · Zbl 0604.62011
[172] Marjoram, P. (2013). Approximation Bayesian Computation. OA Genetics1 3-8. · Zbl 0800.62062
[173] Marjoram, P. and Tavaré, S. (2006). Modern computational approaches for analysing molecular genetic variation data. Nature Reviews Genetics7 759-770.
[174] Marjoram, P., Zubair, A. and Nuzhdin, S. V. (2014). Post-GWAS: Where next? More samples, more SNPs or more biology? Heredity112 79. · Zbl 1252.62022
[175] Marjoram, P., Molitor, J., Plagnol, V. and Tavaré, S. (2003). Markov chain Monte Carlo without likelihoods. Proceedings of the National Academy of Sciences100 15324-15328.
[176] McKinley, T., Cook, A. R. and Deardon, R. (2009). Inference in epidemic models without likelihoods. The International Journal of Biostatistics5 Article 24.
[177] McKinley, T. J., Ross, J. V., Deardon, R. and Cook, A. R. (2014). Simulation-based Bayesian inference for epidemic models. Computational Statistics and Data Analysis71 434-447. · Zbl 1471.62137
[178] McKinley, T. J., Vernon, I., Andrianakis, I., McCreesh, N., Oakley, J. E., Nsubuga, R. N., Goldstein, M. and White, R. G. (2018). Approximate Bayesian Computation and simulation-based inference for complex stochastic epidemic models. Statistical Science33 4-18. · Zbl 1387.62111
[179] Meeds, E., Leenders, R. and Welling, M. (2015). Hamiltonian ABC. ArXiv e-print 1503.01916.
[180] Meeds, E. and Welling, M. (2014). GPS-ABC: Gaussian process surrogate Approximate Bayesian Computation. ArXiv e-print 1401.2838.
[181] Mengersen, K. L., Pudlo, P. and Robert, C. P. (2013). Bayesian computation via empirical likelihood. Proceedings of the National Academy of Sciences110 1321-1326.
[182] Mertens, U. K., Voss, A. and Radev, S. (2018). ABrox-A user-friendly Python module for approximate Bayesian computation with a focus on model comparison. PLOS ONE13 1-16. · Zbl 1387.62111
[183] Mitrovic, J., Sejdinovic, D. and Teh, Y. W. (2016). DR-ABC: Approximate Bayesian Computation with Kernel-Based Distribution Regression. In Proceedings of the 33rd International Conference on Machine Learning (M. F. Balcan and K. Q. Weinberger, eds.) 1482-1491. International Machine Learning Society, New York.
[184] Moores, M. T., Drovandi, C. C., Mengersen, K. and Robert, C. P. (2015). Pre-processing for Approximate Bayesian Computation in image analysis. Statistics and Computing25 23-33. · Zbl 1331.62158
[185] Murakami, Y. (2014). Bayesian parameter inference and model selection by population annealing in systems biology. PloS One9 e104057.
[186] Neal, P. (2012). Efficient likelihood-free Bayesian Computation for household epidemics. Statistics and Computing22 1239-1256. · Zbl 1252.62112
[187] Neal, P. and Huang, C. L. T. (2015). Forward simulation Markov Chain Monte Carlo with applications to stochastic epidemic models. Scandinavian Journal of Statistics42 378-396. · Zbl 1376.62086
[188] Neuenschwander, S., Largiadèr, C. R., Ray, N., Currat, M., Vonlanthen, P. and Excoffier, L. (2008). Colonization history of the Swiss Rhine basin by the bullhead (Cottus gobio): Inference under a Bayesian spatially explicit framework. Molecular Ecology17 757-772. · Zbl 1331.62158
[189] Nott, D. J., Fan, Y., Marshall, L. and Sisson, S. A. (2014). Approximate Bayesian Computation and Bayes linear analysis: Toward High-Dimensional ABC. Journal of Computational and Graphical Statistics23 65-86.
[190] Nunes, M. A. and Balding, D. J. (2010). On optimal selection of summary statistics for Approximate Bayesian Computation. Statistical Applications in Genetics and Molecular Biology9 1-18. · Zbl 1252.62112
[191] Nunes, M. A. and Prangle, D. (2015). abctools: An R package for tuning Approximate Bayesian Computation analyses. The R Journal7 189-205. · Zbl 1376.62086
[192] Ong, V. M. H., Nott, D. J., Tran, M. N., Sisson, S. A. and Drovandi, C. C. (2018). Variational Bayes with synthetic likelihood. Statistics and Computing28 971-988. · Zbl 1384.65015
[193] Pavlidis, P., Laurent, S. and Stephan, W. (2010). msABC: A modification of Hudson s ms to facilitate multi-locus ABC analysis. Molecular Ecology Resources10 723-727.
[194] Pawitan, Y. (2000). Computing empirical likelihood from the bootstrap. Statistics and Probability Letters47 337-345. · Zbl 1304.92047
[195] Peters, G. W., Fan, Y. and Sisson, S. A. (2012a). On sequential Monte Carlo, partial rejection control and Approximate Bayesian Computation. Statistics and Computing22 1209-1222. · Zbl 1252.65022
[196] Peters, G. W., Fan, Y. and Sisson, S. A. (2012b). On sequential Monte Carlo, partial rejection control and Approximate Bayesian Computation. Statistics and Computing22 1209-1222. · Zbl 1384.65015
[197] Peters, G. W., Panayi, E. and Septier, F. (2018). SMC-ABC methods for estimation of stochastic simulation models of the limit order book. In Handbook of Approximate Bayesian Computation (S. A. Sisson, Y. Fan and M. A. Beaumont, eds.) na-na. Chapman and Hall/CRC Press, Boca Raton, Florida.
[198] Peters, G. W. and Sisson, S. A. (2006). Bayesian inference, Monte Carlo sampling and operational risk. Journal of Operational Risk1 27-50. · Zbl 0973.62036
[199] Peters, G. W., Sisson, S. A. and Fan, Y. (2012). Likelihood-free Bayesian inference for alpha-stable models. Computational Statistics and Data Analysis56 3743-3756. · Zbl 1252.65022
[200] Peters, G. W., Nevat, I., Sisson, S. A., Fan, Y. and Yuan, J. (2010). Bayesian symbol detection in wireless relay networks via likelihood-free inference. IEEE Transactions on Signal Processing58 5206-5218. · Zbl 1252.65022
[201] Pham, K. C., Nott, D. J. and Chaudhuri, S. (2014). A note on approximating ABC-MCMC using flexible classifiers. Stat3 218-227.
[202] Picchini, U. (2014). Inference for SDE Models via Approximate Bayesian Computation. Journal of Computational and Graphical Statistics23 1080-1100.
[203] Picchini, U. and Anderson, R. (2017). Approximate maximum likelihood estimation using data-cloning ABC. Computational Statistics and Data Analysis105 166-183. · Zbl 1255.62071
[204] Plagnol, V. and Tavaré, S. (2004). Approximate Bayesian Computation and MCMC. In Monte Carlo and Quasi-Monte Carlo Methods 2002 (H. Niederreiter, ed.) 99-113. Springer, Berlin. · Zbl 1041.65011
[205] Prangle, D. (2016). Lazy ABC. Statistics and Computing26 171-185. · Zbl 1342.62036
[206] Prangle, D. (2017). gk: An R package for the g-and-k and generalised g-and-h distributions. ArXiv e-print 1706.06889.
[207] Prangle, D., Fearnhead, P., Cox, M. P., Biggs, P. J. and French, N. P. (2014a). Semi-automatic selection of summary statistics for ABC model choice. Statistical Applications in Genetics and Molecular Biology13 67-82. · Zbl 1296.92065
[208] Prangle, D., Blum, M. G. B., Popovic, G. and Sisson, S. A. (2014b). Diagnostic tools for Approximate Bayesian Computation using the coverage property. Australian and New Zealand Journal of Statistics56 309-329. · Zbl 1335.62058
[209] Pratt, J. W., Raiffa, H. and Schlaifer, R. (1965). Introduction to Statistical Decision Theory. Wiley, New York. · Zbl 1041.65011
[210] Price, L. F., Drovandi, C. C., Lee, A. and Nott, D. J. (2018). Bayesian Synthetic Likelihood. Journal of Computational and Graphical Statistics27 1-11. · Zbl 1342.62036
[211] Pritchard, J. K., Seielstad, M. T., Perez-Lezaun, A. and Feldman, M. W. (1999). Population growth of human Y chromosomes: A study of Y chromosome microsatellites. Molecular Biology and Evolution16 1791-1798.
[212] Pudlo, P., Marin, J. M., Estoup, A., Cornuet, J. M., Gautier, M. and Robert, C. P. (2016). Reliable ABC model choice via random forests. Bioinformatics32 859-866. · Zbl 1296.92065
[213] Ratmann, O., Jørgensen, O., Hinkley, T., Stumpf, M., Richardson, S. and Wiuf, C. (2007). Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum. PLoS Computational Biology3 e230. · Zbl 1335.62058
[214] Ratmann, O., Andrieu, C., Wiuf, C. and Richardson, S. (2009). Model criticism based on likelihood-free inference, with an application to protein network evolution. Proceedings of the National Academy of Sciences106 10576-10581. · Zbl 1165.62004
[215] Ratmann, O., Andrieu, C., Wiuf, C. and Richardson, S. (2010). Reply to Robert et al.: Model criticism informs model choice and model comparison. Proceedings of the National Academy of Sciences107 E6-E7.
[216] Ratmann, O., Pudlo, P., Richardson, S. and Robert, C. (2011). Monte Carlo algorithms for model assessment via conflicting summaries. ArXiv e-print 1106.5919.
[217] Ratmann, O., Donker, G., Meijer, A., Fraser, C. and Koelle, K. (2012). Phylodynamic inference and model assessment with Approximate Bayesian Computation: Influenza as a case study. PLOS Computational Biology8 1-14.
[218] Ratmann, O., Camacho, A., Meijer, A. and Donker, G. (2013). Statistical modelling of summary values leads to accurate Approximate Bayesian Computations. ArXiv e-print 1305.4283.
[219] Rayner, G. and MacGillivray, H. (2002). Numerical maximum likelihood estimation for the g-and-k and generalized g-and-h distributions. Statistics and Computing12 57-75. · Zbl 1247.62069
[220] Robert, C. P. (2011). Simulation in statistics. In Proceedings of the 2011 Winter Simulation Conference (S. Jain, R. R. Creasey, J. Himmelspach, K. P. White and M. Fu, eds.) 1-12. Winter Simulation, Phoenix, AZ.
[221] Robert, C. P. (2016). Approximate Bayesian Computation: A Survey on Recent Results. In Monte Carlo and Quasi-Monte Carlo Methods (R. Cools and D. Nuyens, eds.) 185-205. Springer International Publishing, Cham. · Zbl 1356.65031
[222] Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods (2nd Ed.). Springer, New York. · Zbl 1096.62003
[223] Robert, C. P., Mengersen, K. and Chen, C. (2010). Model choice versus model criticism. Proceedings of the National Academy of Sciences107 E5.
[224] Robert, C. P., Beaumont, M. A., Marin, J. M. and Cornuet, J. M. (2008). Adaptivity for ABC algorithms: The ABC-PMC scheme. ArXiv e-print 0805.2256. · Zbl 1247.62069
[225] Robert, C. P., Cornuet, J. M., Marin, J. M. and Pillai, N. S. (2011). Lack of confidence in Approximate Bayesian Computation model choice. Proceedings of the National Academy of Sciences108 15112-15117.
[226] Roberts, G. O. and Rosenthal, J. S. (2009). Examples of Adaptive MCMC. Journal of Computational and Graphical Statistics18 349-367. · Zbl 1356.65031
[227] Rodrigues, G. S., Francis, A. R., Sisson, S. A. and Tanaka, M. M. (2018). Inferences on the acquisition of multidrug resistance in mycobacterium tuberculosis using molecular epidemiological data. In Handbook of Approximate Bayesian Computation (S. A. Sisson, Y. Fan and M. A. Beaumont, eds.) na-na. Chapman and Hall/CRC Press, Boca Raton, Florida. · Zbl 1096.62003
[228] Rosenblum, E. B., Hickerson, M. J. and Moritz, C. (2007). A multilocus perspective on colonization accompanied by selection and gene flow. Evolution61 2971-2985.
[229] Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. Annals of Statistics12 1151-1172. · Zbl 0555.62010
[230] Rubio, F. J. and Johansen, A. M. (2013). A simple approach to maximum intractable likelihood estimation. Electronic Journal of Statistics7 1632-1654. · Zbl 1327.62075
[231] Ruli, E., Sartori, N. and Ventura, L. (2016). Approximate Bayesian Computation with composite score functions. Statistics and Computing26 679-692. · Zbl 06591375
[232] Sedki, M., Pudlo, P., Marin, J. M., Robert, C. P. and Cornuet, J. M. (2012). Efficient learning in ABC algorithms. ArXiv e-print 1210.1388.
[233] Seigneurin, A., François, O., Labarère, J., Oudeville, P., Monlong, J. and Colonna, M. (2011). Overdiagnosis from non-progressive cancer detected by screening mammography: Stochastic simulation study with calibration to population based registry data. BMJ343 d7017.
[234] Shirota, S. and Gelfand, A. (2016). Approximate Bayesian Computation and model validation for repulsive spatial point processes. ArXiv preprint 1604.07027. · Zbl 0555.62010
[235] Silk, D., Filippi, S. and Stumpf, M. P. H. (2013). Optimizing threshold-schedules for Approximate Bayesian Computation sequential Monte Carlo samplers: Applications to molecular systems. Statistical Applications in Genetics and Molecular Biology12 603-618. · Zbl 1327.62075
[236] Sisson, S. A., Fan, Y. and Tanaka, M. M. (2007). Sequential Monte Carlo without likelihoods. Proceedings of the National Academy of Sciences104 1760-1765. · Zbl 06591375
[237] Sisson, S. A. and Fan, Y. (2011). Likelihood-Free Markov Chain Monte Carlo. In Handbook of Markov Chain Monte Carlo (S. Brooks, A. Gelman, G. L. Jones and X. L. Meng, eds.) 313-338. Chapman and Hall/CRC, Boca Raton, FL.
[238] Sisson, S. A., Fan, Y. and Beaumont, M. A. (2018). Overview of Approximate Bayesian Computation. In Handbook of Approximate Bayesian Computation (S. A. Sisson, Y. Fan and M. A. Beaumont, eds.) na-na. Chapman and Hall/CRC Press, Boca Raton, Florida. · Zbl 1416.62005
[239] Slater, G. J., Harmon, L. J., Wegmann, D., Joyce, P., Revell, L. J. and Alfaro, M. E. (2018). Fitting models of continuous trait evolution to incompletely sampled comparative data using Approximate Bayesian Computation. Evolution66 752-762.
[240] Spence, M. A. and Blackwell, P. G. (2016). Coupling random inputs for parameter estimation in complex models. Statistics and Computing26 1137-1146. · Zbl 06653292
[241] Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and der Linde, A. V. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B64 1-34. · Zbl 1160.65005
[242] Stocks, M., Siol, M., Lascoux, M. andDe Mita, S. (2014). Amount of information needed for model choice in Approximate Bayesian Computation. PLoS ONE9 1-13. · Zbl 1229.65035
[243] Sunnåker, M., Busetto, A. G., Numminen, E., Corander, J., Foll, M. and Dessimoz, C. (2013). Approximate Bayesian Computation. PLoS Computational Biology9 1-10.
[244] Tallmon, D. A., Luikart, G. and Beaumont, M. A. (2004). Comparative evaluation of a new effective population size estimator based on Approximate Bayesian Computation. Genetics167 977-988.
[245] Tallmon, D. A., Koyuk, A., Luikart, G. and Beaumont, M. A. (2008). COMPUTER PROGRAMS: onesamp: A program to estimate effective population size using Approximate Bayesian Computation. Molecular Ecology Resources8 299-301. · Zbl 06653292
[246] Tanaka, M. M., Francis, A. R., Luciani, F. and Sisson, S. A. (2006). Using Approximate Bayesian Computation to estimate tuberculosis transmission parameters from genotype data. Genetics173 1511-1520. · Zbl 1067.62010
[247] Tavare, S. (2005). Ancestral inference for branching processes. In Branching Processes in Biology: Variation, Growth, Extinction (P. Haccou, P. Jagers and V. Vatutin, eds.) 208-217. Cambridge University Press, Cambridge, UK.
[248] Tavaré, S., Balding, D. J., Griffiths, R. C. and Donnelly, P. (1997). Inferring coalescence times from DNA sequence data. Genetics145 505-518.
[249] Tavaré, S., Marshall, C. R., Will, O., Soligo, C. and Martin, R. D. (2002). Using the fossil record to estimate the age of the last common ancestor of extant primates. Nature416 726.
[250] Technow, F., Messina, C. D., Totir, L. R. and Cooper, M. (2015). Integrating crop growth models with whole genome prediction through Approximate Bayesian computation. PloS One10 e0130855.
[251] Thornton, K. R. (2009). Automating Approximate Bayesian Computation by local linear regression. BMC Genetics10 1-5.
[252] Toni, T. and Stumpf, M. P. H. (2010). Simulation-based model selection for dynamical systems in systems and population biology. Bioinformatics26 104-110.
[253] Toni, T., Welch, D., Strelkowa, N., Ipsen, A. and Stumpf, M. P. H. (2009). Approximate Bayesian Computation scheme for parameter inference and model selection in dynamical systems. Journal of the Royal Society Interface6 187-202.
[254] Tran, M. N., Nott, D. J. and Kohn, R. (2017). Variational Bayes with intractable likelihood. Journal of Computational and Graphical Statistics26 873-882.
[255] Tsutaya, T. and Yoneda, M. (2013). Quantitative reconstruction of weaning ages in archaeological human populations using bone collagen nitrogen isotope ratios and Approximate Bayesian Computation. PLOS ONE8 1-10.
[256] Turner, B. M. and Sederberg, P. B. (2012). Approximate Bayesian Computation with differential evolution. Journal of Mathematical Psychology56 375-385. · Zbl 1282.62063
[257] Turner, B. M. and Sederberg, P. B. (2014). A generalized, likelihood-free method for posterior estimation. Psychonomic Bulletin & Review21 227-250.
[258] Turner, B. M. andVan Zandt, T. (2012). A tutorial on Approximate Bayesian Computation. Journal of Mathematical Psychology56 69-85. · Zbl 1245.91084
[259] Turner, B. M. and Van Zandt, T. (2014). Hierarchical Approximate Bayesian Computation. Psychometrika79 185-209. · Zbl 1288.62191
[260] Vakilzadeh, M. K., Huang, Y., Beck, J. L. and Abrahamsson, T. (2017). Approximate Bayesian Computation by subset simulation using hierarchical state-space models. Mechanical Systems and Signal Processing84 2-20.
[261] Vehtari, A. and Ojanen, J. (2012). A survey of Bayesian predictive methods for model assessment, selection and comparison. Statistics Surveys6 142-228. · Zbl 1282.62063
[262] Verdu, P., Austerlitz, F., Estoup, A., Vitalis, R., Georges, M., Théry, S., Froment, A., Le Bomin, S., Gessain, A., Hombert, J. M., Van der Veen, L., Quintana-Murci, L., Bahuchet, S. and Heyer, E. (2009). Origins and genetic diversity of Pygmy hunter-gatherers from Western Central Africa. Current Biology19 312-318.
[263] Vo, B. N., Drovandi, C. C., Pettitt, A. N. and Pettet, G. J. (2015a). Melanoma cell colony expansion parameters revealed by Approximate Bayesian Computation. PLoS Computational Biology11 e1004635. · Zbl 1245.91084
[264] Vo, B. N., Drovandi, C. C., Pettitt, A. N. and Simpson, M. J. (2015b). Quantifying uncertainty in parameter estimates for stochastic models of collective cell spreading using Approximate Bayesian Computation. Mathematical Biosciences263 133-142. · Zbl 1288.62191
[265] Volz, E. M., Koopman, J. S., Ward, M. J., Brown, A. L. and Frost, S. D. W. (2012). Simple epidemiological dynamics explain phylogenetic clustering of HIV from patients with recent infection. PLoS Computational Biology8 e1002552.
[266] Vrugt, J. A. (2016). Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation. Environmental Modelling and Software75 273-316. · Zbl 1302.62011
[267] Vrugt, J. A. and Sadegh, M. (2013). Toward diagnostic model calibration and evaluation: Approximate Bayesian Computation. Water Resources Research49 4335-4345.
[268] Wang, J. and Atchadé, Y. F. (2014). Approximate Bayesian Computation for exponential random graph models for large social networks. Communications in Statistics-Simulation and Computation43 359-377. · Zbl 1323.65007
[269] Wegmann, D. and Excoffier, L. (2010). Bayesian inference of the demographic history of chimpanzees. Molecular Biology and Evolution27 1425-1435. · Zbl 1371.92033
[270] Wegmann, D., Leuenberger, C. and Excoffier, L. (2009). Efficient Approximate Bayesian Computation coupled with Markov chain Monte Carlo without likelihood. Genetics182 1207-1218.
[271] Wegmann, D., Leuenberger, C., Neuenschwander, S. and Excoffier, L. (2010). ABCtoolbox: A versatile toolkit for Approximate Bayesian Computations. BMC Bioinformatics11 116-122.
[272] Weiss, G. andvon Haeseler, A. (1998). Inference of population history using a likelihood approach. Genetics149 1539-1546.
[273] Weyant, A., Schafer, C. and Wood-Vasey, W. M. (2013). Likelihood-free cosmological inference with type Ia supernovae: approximate Bayesian computation for a complete treatment of uncertainty. The Astrophysical Journal764 116. · Zbl 1323.65007
[274] White, S. R., Kypraios, T. and Preston, S. P. (2015). Piecewise Approximate Bayesian Computation: Fast inference for discretely observed Markov models using a factorised posterior distribution. Statistics and Computing25 289-301. · Zbl 1331.65024
[275] Wilkinson, R. (2013). Approximate Bayesian Computation (ABC) gives exact results under the assumption of model error. Statistical Applications in Genetics and Molecular Biology12 129-141.
[276] Wilkinson, R. (2014). Accelerating ABC methods using Gaussian processes. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, Volume 33 (S. Kaski and J. Corander, eds.) 1015-1023. Microtome Publishing, Brookline, MA.
[277] Wilkinson, R. D. and Tavaré, S. (2009). Estimating primate divergence times by using conditioned birth-and-death processes. Theoretical Population Biology75 278-285. · Zbl 1213.92052
[278] Wood, S. N. (2010). Statistical inference for noisy nonlinear ecological dynamic systems. Nature466 1102-1104.
[279] Zellner, A. (1997). The Bayesian Method of Moments (BMOM): Theory and applications. In Advances in Econometrics (T. Fomby and R. Hill, eds.) 12 85-105. Emerald Group Publishing Limited, Bingley, United Kingdom. · Zbl 1331.65024
[280] Zhu, W., Marin, J. M. and Leisen, F. (2016). A Bootstrap likelihood approach to Bayesian computation. Australian and New Zealand Journal of Statistics58 227-244.
[281] Wilkinson, R. (2014). Accelerating ABC methods using Gaussian processes. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, Volume 33 (S. Kaski and J. Corander, eds.) 1015-1023. Microtome Publishing, Brookline, MA.
[282] Wilkinson, R. D. and Tavaré, S. (2009). Estimating primate divergence times by using conditioned birth-and-death processes. Theoretical Population Biology 75 278-285. · Zbl 1213.92052
[283] Wood, S. N. (2010). Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466 1102-1104.
[284] Zellner, A. (1997). The Bayesian Method of Moments (BMOM): Theory and applications. In Advances in Econometrics (T. Fomby and R. Hill, eds.) 12 85-105. Emerald Group Publishing Limited, Bingley, United Kingdom.
[285] Zhu, W., Marin, J. M. and Leisen, F. (2016). A Bootstrap likelihood approach to Bayesian computation. Australian and New Zealand Journal of Statistics 58 227-244.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.