Evaluating the importance of different communication types in romantic tie prediction on social media. (English) Zbl 1391.91142

Summary: The purpose of this paper is to evaluate which communication types on social media are most indicative for romantic tie prediction. In contrast to analyzing communication as a composite measure, we take a disaggregated approach by modeling separate measures for commenting, liking and tagging focused on an alter’s status updates, photos, videos, check-ins, locations and links. To ensure that we have the best possible model we benchmark 8 classifiers using different data sampling techniques. The results indicate that we can predict romantic ties with very high accuracy. The top performing classification algorithm is adaboost with an accuracy of up to 97.89 %, an AUC of up to 97.56 %, a G-mean of up to 81.81 %, and a F-measure of up to 81.45 %. The top drivers of romantic ties were related to socio-demographic similarity and the frequency and recency of commenting, liking and tagging on photos, albums, videos and statuses. Previous research has largely focused on aggregate measures whereas this study focuses on disaggregate measures. Therefore, to the best of our knowledge, this study is the first to provide such an extensive analysis of romantic tie prediction on social media.


91D30 Social networks; opinion dynamics
68T05 Learning and adaptive systems in artificial intelligence
68M11 Internet topics
Full Text: DOI


[1] Alpaydin, E, Combined 5 \(× \) 2 cv F test for comparing supervised classification learning algorithms, Neural Computation, 11, 1885-1892, (1998)
[2] Aral, S; Walker, D, Tie strength, embeddedness, and social influence: A large-scale networked experiment, Management Science, 60, 1352-1370, (2014)
[3] Arnaboldi, V., Conti, M., Passarella, A., & Pezzoni, F. (2012). Analysis of ego network structure in online social networks. In Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International Conference on Social Computing (SocialCom) (pp. 31-40).
[4] Arnaboldi, V., Conti, M., Passarella, A., & Pezzoni, F. (2013a). Ego networks in Twitter: An experimental analysis. In 2013 Proceedings IEEE INFOCOM (pp. 3459-3464).
[5] Arnaboldi, V; Guazzini, A; Passarella, A, Egocentric online social networks: analysis of key features and prediction of tie strength in facebook, Computer Communications, 36, 1130-1144, (2013)
[6] Baatarjav, E.-A., Amin, A., Dantu, R., & Gupta, N. (2010). Are you my friend? [Twitter response estimator]. In 2010 7th IEEE Consumer Communications and Networking Conference (CCNC) (pp. 1-5).
[7] Backstrom, L., & Kleinberg, J. (2014). Romantic partnerships and the dispersion of social ties: A network analysis of relationship status on facebook. In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work and Social Computing. CSCW ’14 (pp. 831-841). New York, NY: ACM
[8] Ballings, M; Poel, D, Kernel factory: an ensemble of kernel machines, Expert Systems with Applications, 40, 2904-2913, (2013)
[9] Ballings, M; Poel, D, CRM in social media: predicting increases in facebook usage frequency, European Journal of Operational Research, 244, 248-260, (2015) · Zbl 1346.90412
[10] Ballings, M., & Van Den Poel, D. (2015a). R-package kernelFactory: Kernel factory: An ensemble of Kernel machines.
[11] Ballings, M., & Van Den Poel, D. (2015b). R-package rotationForest: Fit and deploy rotation forest models.
[12] Ballings, M; Poel, D; Bogaert, M, Social media optimization: identifying an optimal strategy for increasing network size on facebook, Omega, 59, 15-25, (2016)
[13] Baym, NK; Ledbetter, A, Tunes that bind?, Information, Communication and Society, 12, 408-427, (2009)
[14] Bentley, JL, Multidimensional binary search trees used for associative searching, Communications of the ACM, 18, 509-517, (1975) · Zbl 0306.68061
[15] Berk, R. A. (2008). Statistical learning from a regression perspective. New York: Springer. · Zbl 1258.62047
[16] Beygelzimer, A., Kakadet, S., Langford, J., Arya, S., & Mount, D. (2013). R-package FNN: Fast nearest neighbor search algorithms and applications.
[17] Bogaert, M., Ballings, M., & Van den Poel, D. (2015). The added value of facebook friends data in event attendance prediction. Decision Support Systems.
[18] Breiman, L, Bagging predictors, Machine Learning, 24, 123-140, (1996) · Zbl 0858.68080
[19] Breiman, L, Random forests, Machine Learning, 45, 5-32, (2001) · Zbl 1007.68152
[20] Burez, J; Poel, D, Handling class imbalance in customer churn prediction, Expert Systems with Applications, 36, 4626-4636, (2009)
[21] Burke, M., & Kraut, R. E. (2014). Growing closer on facebook: Changes in tie strength through social network site use. In Proceedings of the 32Nd Annual ACM Conference on Human Factors in Computing Systems. CHI ’14 (pp. 4187-4196). New York, NY: ACM
[22] Chawla, NV; Bowyer, KW; Hall, LO; Kegelmeyer, WP, SMOTE: synthetic minority over-sampling technique, Journal of Artificial Intelligence Research, 16, 321-357, (2002) · Zbl 0994.68128
[23] Choi, J.-H., Kang, D.-o., Jung, J., & Bae, C. (2014). Investigating correlations between human social relationships and online communications. In 2014 International Conference on Information and Communication Technology Convergence (ICTC) (pp. 736-737).
[24] Culp, M., Johnson, K., & Michailidis, A. G. (2012). ada: An R package for stochastic boosting.
[25] Meo, P; Ferrara, E; Fiumara, G; Provetti, A, On facebook most ties are weak, Communications of the ACM, 57, 78-84, (2014)
[26] Vries, L; Gensler, S; Leeflang, PSH, Popularity of brand posts on brand Fan pages: an investigation of the effects of social media marketing, Journal of Interactive Marketing, 26, 83-91, (2012)
[27] Demšar, J, Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning Research, 7, 1-30, (2006) · Zbl 1222.68184
[28] Dietterich, T. G. (2000). Ensemble methods in machine learning. In Multiple Classifier Systems. No. 1857 in Lecture Notes in Computer Science (pp. 1-15). Berlin, Heidelberg: Springer. doi:10.1007/3-540-45014-9_1.
[29] Díez-Pastor, JF; Rodríguez, JJ; García-Osorio, C; Kuncheva, LI, Random balance: ensembles of variable priors classifiers for imbalanced data, Knowledge Based Systems, 85, 96-111, (2015)
[30] Dreiseitl, S; Ohno-Machado, L, Logistic regression and artificial neural network classification models: A methodology review, Journal of Biomedical Informatics, 35, 352-359, (2002)
[31] Dunbar, RIM; Arnaboldi, V; Conti, M; Passarella, A, The structure of online social networks mirrors those in the offline world, Social Networks, 43, 39-47, (2015)
[32] Dunbar, RIM; Spoors, M, Social networks, support cliques, and kinship, Human Nature, 6, 273-290, (1995)
[33] Dunn, OJ, Multiple comparisons among means, Journal of the American Statistical Association, 56, 52-64, (1961) · Zbl 0103.37001
[34] Freund, Y et al. (1996). Experiments with a new boosting algorithm. In ICML. Vol. 96.
[35] Friedman, J., Hastie, T., Simon, N., & Tibshirani, R. (2015). R-package glmnet: Lasso and elastic-net regularized generalized linear models.
[36] Friedman, JH, Stochastic gradient boosting, Computational Statistics and Data Analysis, 38, 367-378, (2002) · Zbl 1072.65502
[37] Friedman, JH; Meulman, JJ, Multiple additive regression trees with application in epidemiology, Statistics in Medicine, 22, 1365-1381, (2003)
[38] Friedman, M, A comparison of alternative tests of significance for the problem of m rankings, The Annals of Mathematical Statistics, 11, 86-92, (1940) · Zbl 0063.01455
[39] Gilbert, E. (2012). Predicting tie strength in a new medium. In Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work. CSCW ’12 (pp. 1047-1056). New York, NY: ACM
[40] Gilbert, E., & Karahalios, K. (2009). Predicting tie strength with social media. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’09 (pp. 211-220). New York, NY: ACM
[41] Granovetter, M. S. (1973). The strength of weak ties. American journal of sociology, 1360-1380.
[42] Hanley, JA; McNeil, BJ, The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology, 143, 29-36, (1982)
[43] He, H; Garcia, EA, Learning from imbalanced data, IEEE Transactions on Knowledge and Data Engineering, 21, 1263-1284, (2009)
[44] Hernandez-Orallo, J; Flach, P; Ferri, C, A unified view of performance metrics: translating threshold choice into expected classification loss, Journal of Machine Learning Research, 13, 2813-2869, (2012) · Zbl 1436.62260
[45] Hill, RA; Dunbar, RIM, Social network size in humans, Human Nature, 14, 53-72, (2003)
[46] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to statistical learning: with applications in R (1st ed.). New York: Springer. · Zbl 1281.62147
[47] Janitza, S; Strobl, C; Boulesteix, A-L, An AUC-based permutation variable importance measure for random forests, BMC Bioinformatics, 14, 119, (2013)
[48] Jeners, N; Nicolaescu, P; Prinz, W; Herrero, P (ed.); Panetto, H (ed.); Meersman, R (ed.); Dillon, T (ed.), Analyzing tie-strength across different media, 554-563, (2012), Berlin, Heidelberg
[49] Jones, JJ; Settle, JE; Bond, RM; Fariss, CJ; Marlow, C; Fowler, JH, Inferring tie strength from online directed behavior, PLoS One, 8, e52168, (2013)
[50] Kahanda, I; Neville, J, Using transactional information to predict link strength in online social networks, ICWSM, 9, 74-81, (2009)
[51] Kemp, S. (2014). Global social media users pass 2 Billion. http://wearesocial.net/blog/2014/08/global-social-media-users-pass-2-billion/.
[52] Kossinets, G; Watts, DJ, Empirical analysis of an evolving social network, Science, 311, 88-90, (2006) · Zbl 1226.91055
[53] Kwok, L; Yu, B, Spreading social media messages on facebook: an analysis of restaurant business-to-consumer communications, Cornell Hospitality Quarterly, 54, 84-94, (2013)
[54] Lampe, C. A., Ellison, N., & Steinfield, C. (2007). A familiar face(book): profile elements as signals in an online social network. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’07(pp. 435-444). New York, NY: ACM
[55] Langley, P., Iba, W., & Thompson, K. (1992). An analysis of Bayesian classifiers. In Proceedings of the Tenth National Conference on Artificial Intelligence. AAAI’92 (pp. 223-228). San Jose, CA: AAAI Press · Zbl 1222.68184
[56] Lewis, K; Kaufman, J; Gonzalez, M; Wimmer, A; Christakis, N, Tastes, ties, and time: A new social network dataset using facebook.com, Social Networks, 30, 330-342, (2008)
[57] Liaw, A; Wiener, M, Classification and regression by randomforest, R news, 2, 18-22, (2002)
[58] Lin, N; Dayton, PW; Greenwald, P, Analyzing the instrumental use of relations in the context of social structure, Sociological Methods and Research, 7, 149-166, (1978)
[59] Liu, X., Shen, H., Ma, F., & Liang, W. (2014). Topical influential user analysis with relationship strength estimation in Twitter. In 2014 IEEE International Conference on Data Mining Workshop (ICDMW) (pp. 1012-1019).
[60] Marsden, PV; Campbell, KE, Measuring tie strength, Social Forces, 63, 482-501, (1984)
[61] McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 415-444. · Zbl 0994.68128
[62] Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2015). R-package e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien.
[63] Nemenyi, P. (1963). Distribution-free multiple comparisons. Princeton: princeton University.
[64] Ng, AY; Dietterich, TG (ed.); Becker, S (ed.); Ghahramani, Z (ed.), On discriminative versus generative classifiers: A comparison of logistic regression and naive Bayes, 841-848, (2002), Cambridge
[65] Novet, J. (2014). Facebook’s Valentine’s Day gift to all of us: Data about our relationships. http://venturebeat.com/2014/02/15/facebooks-valentines-day-gift-to-all-of-us-data-about-our-relationships/.
[66] Ogata, H; Yano, Y; Furugori, N; Jin, Q, Computer supported social networking for augmenting cooperation, Computer Supported Cooperative Work (CSCW), 10, 189-209, (2001)
[67] Oztekin, A; Delen, D; Turkyilmaz, A; Zaim, S, A machine learning-based usability evaluation method for elearning systems, Decision Support Systems, 56, 63-73, (2013)
[68] Pappalardo, L., Rossetti, G., & Pedreschi, D. (2012). ’How well do we know each other?’ Detecting tie strength in multidimensional social networks. In 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 1040-1045).
[69] Ripley, B., & Venables, W. (2015). R-package nnet: Feed-forward neural networks and multinomial log-linear models.
[70] Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge: cambridge University Press. · Zbl 0853.62046
[71] Roberts, SGB; Dunbar, RIM; Pollet, TV; Kuppens, T, Exploring variation in active network size: constraints and ego characteristics, Social Networks, 31, 138-146, (2009)
[72] Rodriguez, J; Kuncheva, L; Alonso, C, Rotation forest: A new classifier ensemble method, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 1619-1630, (2006)
[73] Servia-Rodríguez, S; Díaz-Redondo, RP; Fernández-Vilas, A; Blanco-Fernández, Y; Pazos-Arias, JJ, A tie strength based model to socially-enhance applications and its enabling implementation: mysocialsphere, Expert Systems with Applications, 41, 2582-2594, (2014)
[74] Sevim, C; Oztekin, A; Bali, O; Gumus, S; Guresen, E, Developing an early warning system to predict currency crises, European Journal of Operational Research, 237, 1095-1104, (2014)
[75] Sheng, D; Sun, T; Wang, S; Wang, Z; Zhang, M; Ishikawa, Y (ed.); Li, J (ed.); Wang, W (ed.); Zhang, R (ed.); Zhang, W (ed.), Measuring strength of ties in social network, 292-300, (2013), Berlin, Heidelberg
[76] Spackman, K. A. (1991). Maximum likelihood training of connectionist models: comparison with least squares back-propagation and logistic regression. In Proceedings of the Annual Symposium on Computer Application in Medical Care (pp. 285-289).
[77] Spence, M, Job market signaling, The Quarterly Journal of Economics, 87, 355-374, (1973)
[78] Thorleuchter, D; Poel, D, Predicting e-commerce company success by mining the text of its publicly-accessible website, Expert Systems with Applications, 39, 13026-13034, (2012)
[79] Trattner, C; Steurer, M, Detecting partnership in location-based and online social networks, Social Network Analysis and Mining, 5, 1-15, (2015)
[80] Wiese, J., Min, J.-K., Hong, J. I., & Zimmerman, J. (2015). “You never call, you never write”: Call and SMS logs do not always indicate tie strength. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing. CSCW ’15 (pp. 765-774). New York, NY: ACM
[81] Xiang, R., Neville, J., & Rogati, M. (2010). Modeling relationship strength in online social networks. In Proceedings of the 19th International Conference on World Wide Web. WWW ’10 (pp. 981-990). New York, NY: ACM
[82] Xu, K; Zou, K; Huang, Y; Yu, X; Zhang, X, Mining community and inferring friendship in mobile social networks, Neurocomputing, 174, 605-616, (2016)
[83] Zhang, H., & Dantu, R. (2010). Predicting social ties in mobile phone networks. In 2010 IEEE International Conference on Intelligence and Security Informatics (ISI) (pp. 25-30).
[84] Zhao, J; Wu, J; Liu, G; Tao, D; Xu, K; Liu, C, Being rational or aggressive? A revisit to dunbar’s number in online social networks, Neurocomputing, 142, 343-353, (2014)
[85] Zhao, X; Yuan, J; Li, G; Chen, X; Li, Z, Relationship strength estimation for online social networks with the study on facebook, Neurocomputing, 95, 89-97, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.