×

zbMATH — the first resource for mathematics

kPCA-based parametric solutions within the PGD framework. (English) Zbl 06887320
Summary: Parametric solutions make possible fast and reliable real-time simulations which, in turn allow real time optimization, simulation-based control and uncertainty propagation. This opens unprecedented possibilities for robust and efficient design and real-time decision making. The construction of such parametric solutions was addressed in our former works in the context of models whose parameters were easily identified and known in advance. In this work we address more complex scenarios in which the parameters do not appear explicitly in the model – complex microstructures, for instance. In these circumstances the parametric model solution requires combining a technique to find the relevant model parameters and a solution procedure able to cope with high-dimensional models, avoiding the well-known curse of dimensionality. In this work, kPCA (kernel Principal Component Analysis) is used for extracting the hidden model parameters, whereas the PGD (Proper Generalized Decomposition) is used for calculating the resulting parametric solution.

MSC:
62H25 Factor analysis and principal components; correspondence analysis
62G05 Nonparametric estimation
Software:
rbMIT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aghighi, MS; Ammar, A; Metivier, C; Chinesta, F, Parametric solution of the Rayleigh-Bénard convection model by using the pgd: application to nanofluids, Int J Numer Methods Heat Fluid Flows, 25, 1252-1281, (2015) · Zbl 1356.76309
[2] Aguado, JV; Huerta, A; Chinesta, F; Cueto, E, Real-time monitoring of thermal processes by reduced order modelling, Int J Numer Meth Eng, 102, 991-1017, (2015) · Zbl 1352.80002
[3] Ammar, A; Mokdad, B; Chinesta, F; Keunings, R, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids, J Non Newton Fluid Mech, 139, 153-176, (2006) · Zbl 1195.76337
[4] Ammar, A; Mokdad, B; Chinesta, F; Keunings, R, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. part ii, J Non Newton Fluid Mech, 144, 98-121, (2007) · Zbl 1196.76047
[5] Ammar, A; Normandin, M; Chinesta, F, Solving parametric complex fluids models in rheometric flows, J Non Newton Fluid Mech, 165, 1588-1601, (2010) · Zbl 1274.76007
[6] Ammar, A; Chinesta, F; Cueto, E; Doblaré, M, Proper generalized decomposition of time-multiscale models, Int J Numer Meth Eng, 90, 569-596, (2012) · Zbl 1242.65197
[7] Ammar, A; Huerta, A; Chinesta, F; Cueto, E; Leygue, A, Parametric solutions involving geometry: a step towards efficient shape optimization, Comput Methods Appl Mech Eng, 268, 178-193, (2014) · Zbl 1295.74080
[8] Amsallem, D; Cortial, J; Farhat, C, Towards real-time cfd-based aeroelastic computations using a database of reduced-order information, AIAA J, 48, 2029-2037, (2010)
[9] Amsallem, D; Farhat, C, An interpolation method for adapting reduced-order models and application to aeroelasticity, AIAA J, 46, 1803-1813, (2008)
[10] Athanasios, C; Sorensen, ADC; Gugercin, S, A survey of model reduction methods for large-scale systems, Contemp Math, 280, 193-220, (2001) · Zbl 1048.93014
[11] Ballarin, F; Manzoni, A; Rozza, G; Salsa, S, Shape optimization by free-form deformation: existence results and numerical solution for Stokes flows, J Sci Comput, 60, 537-563, (2014) · Zbl 1303.49017
[12] Barrault, M; Maday, Y; Nguyen, NC; Patera, AT, An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, CR Math, 339, 667-672, (2004) · Zbl 1061.65118
[13] Bialecki, RA; Kassab, AJ; Fic, A, Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis, Int J Numer Meth Engrg, 62, 774-797, (2005) · Zbl 1092.80010
[14] Bognet, B; Bordeu, F; Chinesta, F; Leygue, A; Poitou, A, Advanced simulation of models defined in plate geometries: 3d solutions with 2d computational complexity, Comput Methods Appl Mech Eng, 201-204, 1-12, (2012) · Zbl 1239.74045
[15] Bognet, B; Leygue, A; Chinesta, F, Separated representations of 3d elastic solutions in shell geometries, Adv Modell Simul Eng Sci, 1, 34, (2014) · Zbl 1239.74045
[16] Bui-Thanh, T; Willcox, K; Ghattas, O; Bloemen Waanders, B, Goal-oriented, model-constrained optimization for reduction of large-scale systems, J Comput Phys, 224, 880-896, (2007) · Zbl 1123.65081
[17] Cancès E, Defranceschi M, Kutzelnigg W, Le Bris C, Maday Y (2003) Computational quantum chemistry: a primer. In: Handbook of numerical analysis, vol X, pp 3-270 · Zbl 1070.81534
[18] Chaturantabut, S; Sorensen, DC, Nonlinear model reduction via discrete empirical interpolation, SIAM J Sci Comput, 32, 2737-2764, (2010) · Zbl 1217.65169
[19] Chinesta, F; Ammar, A; Cueto, E, Proper generalized decomposition of multiscale models, Int J Numer Meth Eng, 83, 1114-1132, (2010) · Zbl 1197.76093
[20] Chinesta, F; Ammar, A; Cueto, E, Recent advances in the use of the proper generalized decomposition for solving multidimensional models, Arch Comput Methods Eng, 17, 327-350, (2010) · Zbl 1269.65106
[21] Chinesta, F; Ammar, A; Leygue, A; Keunings, R, An overview of the proper generalized decomposition with applications in computational rheology, J Non Newton Fluid Mech, 166, 578-592, (2011) · Zbl 1359.76219
[22] Chinesta, F; Leygue, A; Bordeu, F; Aguado, JV; Cueto, E; Gonzalez, D; Alfaro, I; Ammar, A; Huerta, A, PGD-based computational vademecum for efficient design, optimization and control, Arch Comput Methods Eng, 20, 31-59, (2013) · Zbl 1354.65100
[23] Chinesta F, Keunings R, Leygue A (2014) The proper generalized decomposition for advanced numerical simulations. Springer, Switzerland · Zbl 1287.65001
[24] Chinesta, F; Ladeveze, P; Cueto, E, A short review on model order reduction based on proper generalized decomposition, Arch Comput Methods Eng, 18, 395-404, (2011)
[25] Dowell, E; Hall, K, Modeling of fluid-structure interaction, Annu Rev Fluid Mech, 33, 445-490, (2001) · Zbl 1052.76059
[26] Ghnatios, C; Chinesta, F; Cueto, E; Leygue, A; Poitou, A; Breitkopf, P; Villon, P, Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: application to pultrusion, Compos A Appl Sci Manuf, 42, 1169-1178, (2011)
[27] Ghnatios, C; Masson, F; Huerta, A; Leygue, A; Cueto, E; Chinesta, F, Proper generalized decomposition based dynamic data-driven control of thermal processes, Comput Methods Appl Mech Eng, 213-216, 29-41, (2012)
[28] Girault, M; Videcoq, E; Petit, D, Estimation of time-varying heat sources through inversion of a low order model built with the modal identification method from in-situ temperature measurements, Int J Heat Mass Transf, 53, 206-219, (2010) · Zbl 1180.80055
[29] Gonzalez, D; Masson, F; Poulhaon, F; Cueto, E; Chinesta, F, Proper generalized decomposition based dynamic data driven inverse identification, Math Comput Simul, 82, 1677-1695, (2012)
[30] González, D; Alfaro, I; Quesada, C; Cueto, E; Chinesta, F, Computational vademecums for the real-time simulation of haptic collision between nonlinear solids, Comput Methods Appl Mech Eng, 283, 210-223, (2015) · Zbl 06929447
[31] Gonzalez, D; Cueto, E; Chinesta, F, Real-time direct integration of reduced solid dynamics equations, Int J Numer Methods Eng, 99, 633-653, (2014) · Zbl 1352.74131
[32] González, D; Cueto, E; Chinesta, F, Computational patient avatars for surgery planning, Ann Biomed Eng, 44, 35-45, (2015)
[33] Halabi, F; González, D; Chico, A; Doblaré, M, FE2 multiscale in linear elasticity based on parametrized microscale models using proper generalized decomposition, Comput Methods Appl Mech Eng, 257, 183-202, (2013) · Zbl 1286.74013
[34] Hesthaven J, Rozza G, Stamm B (2015) Certified reduced basis methods for parametrized partial differential equations. Springer, New York · Zbl 1329.65203
[35] Heyberger, C; Boucard, P-A; Neron, D, A rational strategy for the resolution of parametrized problems in the PGD framework, Comput Methods Appl Mech Eng, 259, 40-49, (2013) · Zbl 1286.65081
[36] Karhunen, K, Uber lineare methoden in der wahrscheinlichkeitsrechnung, Ann Acad Sci Fennicae Ser Al Math Phys, 3, 1-79, (1946) · Zbl 0030.16502
[37] Ladeveze, P, On a family of algorithms for structural mechanics (in French), Comptes Rendus Académie Des Sci Paris, 300, 41-44, (1985) · Zbl 0597.73089
[38] Ladeveze, P, The large time increment method for the analyze of structures with nonlinear constitutive relation described by internal variables, Comptes Rendus Académie Des Sci Paris, 309, 1095-1099, (1989) · Zbl 0677.73060
[39] Lamari, H; Ammar, A; Cartraud, P; Legrain, G; Jacquemin, F; Chinesta, F, Routes for efficient computational homogenization of non-linear materials using the proper generalized decomposition, Arch Comput Methods Eng, 17, 373-391, (2010) · Zbl 1269.74187
[40] Lassila, T; Manzoni, A; Quarteroni, A; Rozza, G, A reduced computational and geometrical framework for inverse problems in hemodynamics, Int J Numer Methods Biomed Eng, 29, 741-776, (2013)
[41] Lassila, T; Rozza, G, Parametric free-form shape design with PDE models and reduced basis method, Comput Methods Appl Mech Eng, 199, 1583-1592, (2010) · Zbl 1231.76245
[42] Laughlin, RB; Pines, D, The theory of everything, Proc Nat Acad Sci, 97, 28-31, (2000)
[43] Lee JA, Verleysen M (2007) Nonlinear dimensionality reduction. Springer, New York · Zbl 1128.68024
[44] Loève MM (1963) Probability theory. The university series in higher mathematics, 3rd edn. Van Nostrand, Princeton, NJ · Zbl 0108.14202
[45] Lopez E, Gonzalez D, Aguado JV, Abisset-Chavanne E, Lebel F, Upadhyay R, Cueto E, Binetruy C, Chinesta F (2016) A manifold learning approach for integrated computational materials engineering (in press) · Zbl 1390.74196
[46] Lorenz EN (1956) Empirical orthogonal functions and statistical weather prediction. MIT, Departement of Meteorology, Scientific Report Number 1, Statistical Forecasting Project
[47] Maday, Y; Patera, AT; Turinici, G, A priori convergence theory for reduced-basis approximations of single-parametric elliptic partial differential equations, J Sci Comput, 17, 437-446, (2002) · Zbl 1014.65115
[48] Maday, Y; Ronquist, EM, The reduced basis element method: application to a thermal fin problem, SIAM J Sci Comput, 26, 240-258, (2004) · Zbl 1077.65120
[49] Manzoni, A; Quarteroni, A; Rozza, G, Computational reduction for parametrized pdes: strategies and applications, Milan J Math, 80, 283-309, (2012) · Zbl 1432.65171
[50] Manzoni, A; Quarteroni, A; Rozza, G, Model reduction techniques for fast blood flow simulation in parametrized geometries, Int J Numer Methods Biomed Eng, 28, 604-625, (2012)
[51] Manzoni, A; Quarteroni, A; Rozza, G, Shape optimization for viscous flows by reduced basis methods and free-form deformation, Int J Numer Meth Fluids, 70, 646-670, (2012)
[52] Mena, A; Bel, D; Alfaro, I; Gonzalez, D; Cueto, E; Chinesta, F, Towards a pancreatic surgery simulator based on model order reduction, Adv Model Simul Eng Sci, 2, 31, (2015)
[53] Millán, D; Arroyo, M, Nonlinear manifold learning for model reduction in finite elastodynamics, Comput Methods Appl Mech Eng, 261-262, 118-131, (2013) · Zbl 1286.74021
[54] Niroomandi, S; González, D; Alfaro, I; Bordeu, F; Leygue, A; Cueto, E; Chinesta, F, Real-time simulation of biological soft tissues: a PGD approach, Int J Numer Methods Biomed Eng, 29, 586-600, (2013)
[55] Niroomandi, S; Gonzalez, D; Alfaro, I; Cueto, E; Chinesta, F, Model order reduction in hyperelasticity: a proper generalized decomposition approach, Int J Numer Meth Eng, 96, 129-149, (2013) · Zbl 1352.74417
[56] Nouy, A, A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations, Comput Methods Appl Mech Eng, 196, 4521-4537, (2007) · Zbl 1173.80311
[57] Willcox, K; Benner, P; Gugercin, S, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev, 57, 483-531, (2016) · Zbl 1339.37089
[58] Park, HM; Cho, DH, The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems, Chem Eng Sci, 51, 81-98, (1996)
[59] Patera AT, Rozza G (2007) Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations. Technical report, MIT Pappalardo Monographs in Mechanical Engineering
[60] Pruliere, E; Chinesta, F; Ammar, A, On the deterministic solution of multidimensional parametric models using the proper generalized decomposition, Math Comput Simul, 81, 791-810, (2010) · Zbl 1207.65014
[61] Quarteroni, A; Rozza, G; Manzoni, A, Certified reduced basis approximation for parametrized PDE and applications, J Math Ind, 1, 1-49, (2011) · Zbl 1273.65148
[62] Quarteroni, A; Rozza, G, Optimal control and shape optimization of aorto-coronaric bypass anastomoses, Math Models Methods Appl Sci, 13, 1801-1823, (2003) · Zbl 1063.49029
[63] Roweis, ST; Saul, LK, Nonlinear dimensionality reduction by locally linear embedding, Science, 290, 2323-2326, (2000)
[64] Rozza, G; Ladeveze, P (ed.); Chinesta, F (ed.), Fundamentals of reduced basis method for problems governed by parametrized pdes and applications, (2014), New York
[65] Ronquist, EM; Maday, Y, A reduced-basis element method, C R Acad Sci Paris Ser I, 335, 195-200, (2002) · Zbl 1006.65128
[66] Rozza, G; Huynh, DBP; Patera, AT, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations - application to transport and continuum mechanics, Arch Comput Methods Eng, 15, 229-275, (2008) · Zbl 1304.65251
[67] Ryckelynck D (2003) A priori model reduction method for the optimization of complex problems. In: Workshop on optimal design of materials and structures, ecole polytechnique, Palaiseau, Paris (France)
[68] Ryckelynck, D, A priori hyperreduction method: an adaptive approach, J Comput Phys, 202, 346-366, (2005) · Zbl 1288.65178
[69] Ryckelynck, D; Chinesta, F; Cueto, E; Ammar, A, On the a priori model reduction: overview and recent developments, Arch Comput Methods Eng, 12, 91-128, (2006) · Zbl 1142.76462
[70] Ryckelynck, D; Hermanns, L; Chinesta, F; Alarcon, E, An efficient ‘a priori’ model reduction for boundary element models, Eng Anal Bound Elem, 29, 796-801, (2005) · Zbl 1182.76913
[71] Scholkopf B, Smola A, Muller KR (1999) Kernel principal component analysis. In: Advances in kernel methods—suport vector learning. MIT Press, New York, pp 327-352 · Zbl 1274.76007
[72] Schölkopf, B; Smola, A; Müller, K-R, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput, 10, 1299-1319, (1998)
[73] Videcoq, E; Quemener, O; Lazard, M; Neveu, A, Heat source identification and on-line temperature control by a branch eigenmodes reduced model, Int J Heat Mass Transf, 51, 4743-4752, (2008) · Zbl 1154.80369
[74] Vitse, M; Neron, D; Boucard, P-A, Virtual charts of solutions for parametrized nonlinear equations, Comput Mech, 54, 1529-1539, (2014) · Zbl 1309.74073
[75] Volkwein S (2001) Model reduction using proper orthogonal decomposition. Technical report, lecture notes. Institute of Mathematics and Scientific Computing, University of Graz · Zbl 1007.49019
[76] Wang Q (2012) Kernel principal component analysis and its applications in face recognition and active shape models. ArXiv preprint arXiv:1207.3538 · Zbl 1356.76309
[77] Zimmer, VA; Lekadir, K; Hoogendoorn, C; Frangi, AF; Piella, G, A framework for optimal kernel-based manifold embedding of medical image data, Comput Med Imaging Graph, 41, 93-107, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.