Lazowick Lord, Harriet Functionally Hausdorff spaces. (English) Zbl 0689.18006 Cah. Topologie Géom. Différ. Catég. 30, No. 3, 247-256 (1989). A space X is called functionally-Hausdorff provided that the set of continuous functions from X to the reals separates points in X. The author characterizes various types of special morphisms in the category FH of functionally Hausdorff spaces and characterizes the FH-epimorphisms and the FH-regular morphisms in TOP. It is shown that FH-epimorphisms are closed under composition but that FH-regular morphisms are not. A class of morphisms N is described for which (FH-epi,N) is a factorization structure on TOP. The main result is that there is no factorization structure (E,M) on TOP for which X is functionally Hausdorff iff the diagonal map \(\Delta_ X\) is in M. Reviewer: G.E.Strecker Cited in 5 Documents MSC: 18B30 Categories of topological spaces and continuous mappings (MSC2010) 18A20 Epimorphisms, monomorphisms, special classes of morphisms, null morphisms 54D10 Lower separation axioms (\(T_0\)–\(T_3\), etc.) Keywords:functionally Hausdorff spaces; epimorphisms; regular morphisms; factorization structure PDFBibTeX XMLCite \textit{H. Lazowick Lord}, Cah. Topologie Géom. Différ. Catégoriques 30, No. 3, 247--256 (1989; Zbl 0689.18006) Full Text: Numdam EuDML References: [1] 1 D. Dikranjan & E. Giuli , Closure operators induced by topological epireflections , Coll. Math. Soc. J. Bolyai, Top. & Appl. 41 . EGER (Hungary). 1983 . Zbl 0601.54016 · Zbl 0601.54016 [2] 2 D. Dikranjan & E. Giuli . Closure operators I , Top. & Appl. 27 ( 1987 ). 129 - 143 . MR 911687 | Zbl 0634.54008 · Zbl 0634.54008 · doi:10.1016/0166-8641(87)90100-3 [3] 3 D. Dikranjan , E. Giuli & A. Tozzi , Topological categories and closure operators , Preprint. MR 953772 · Zbl 0657.18003 [4] 4 E. Giuli & M. Husek . A diagonal theorem for epireflective subcategories of Top and cowell-poweredness . Ann. di Mate. Pura e Appl. . to appear. Zbl 0617.54006 · Zbl 0617.54006 · doi:10.1007/BF01790546 [5] 5 E. Giuli , S. Mantovani & W. Tholen , Objects with closed diagonals , J. Pure Appl. Algebra , to appear. MR 941895 | Zbl 0651.18002 · Zbl 0651.18002 · doi:10.1016/0022-4049(88)90083-7 [6] 6 H. Herrlich , G. Salicrup & G.E. Strecker , Factorizations, denseness. separation and relatively compact objects , Top. & Appl. 27 ( 1987 ), 157 - 169 . MR 911689 | Zbl 0629.18003 · Zbl 0629.18003 · doi:10.1016/0166-8641(87)90102-7 [7] 7 H. Herrlich & G.E. Strecker , Category Theory , Heldermann . Berlin 1979 . MR 571016 | Zbl 0437.18001 · Zbl 0437.18001 [8] 8 H. Lord , Factorizations, M-separation and extremal-epireflective subcategories , Top. & Appl. 28 ( 1988 ), 241 - 253 . MR 931526 | Zbl 0647.18001 · Zbl 0647.18001 · doi:10.1016/0166-8641(88)90045-4 [9] 9 D. Pumplün & H. Röhrl , Separated totally convex spaces , Man. Math. 50 ( 1985 ), 145 - 183 . Article | MR 784142 | Zbl 0594.46064 · Zbl 0594.46064 · doi:10.1007/BF01168830 [10] 10 S. Salbany , Reflective subcategories and closure operators , Lecture Notes in Math. 540 , Springer ( 1975 ), 548 - 565 . MR 451186 | Zbl 0335.54003 · Zbl 0335.54003 [11] 11 J. Schröder . Epi und extremer Mono in T2a . Arch. Math. 25 ( 1974 ), 561 - 565 . MR 385789 | Zbl 0301.18001 · Zbl 0301.18001 · doi:10.1007/BF01238726 [12] 12 L.A. Steen & J.A. Seebach Jr.. Counterexamples in Topology . Springer . 1978 . MR 507446 | Zbl 0386.54001 · Zbl 0386.54001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.