Shibata, Tetsutaro Asymptotic properties of variational eigenvalues for semilinear elliptic operators. (English) Zbl 0689.35070 Boll. Unione Mat. Ital, VII. Ser., B 2, No. 2, 411-425 (1988). The purpose of this paper is to characterize the accumulation points of the n-th variational eigenvalues of the following semilinear eigenvalue problem: \[ Lu+f(x,u)=\mu u\quad in\quad \Omega,\quad u=0\quad on\quad \partial \Omega, \] where \(\Omega \subset {\mathbb{R}}^ N(N\geq 3)\) is a bounded domain with a smooth boundary \(\partial \Omega\) and \[ Lu:=- \sum^{N}_{i,j=1}\partial_{x_ j}(a_{ij}(x)\partial_{x_ i}u)+a_ 0(x)u \] is a formally self adjoint operator with \(L^{\infty}\) coefficients such that \(a_{ij}=a_{ji}(i,j=1,2,...,N)\) and \(a_ 0\geq 0\), which is uniformly elliptic in \(\Omega\). Cited in 5 Documents MSC: 35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs 35J65 Nonlinear boundary value problems for linear elliptic equations Keywords:semilinear elliptic; eigenvalue problem; asymptotic properties; variational eigenvalues; semilinear elliptic operators PDF BibTeX XML Cite \textit{T. Shibata}, Boll. Unione Mat. Ital., VII. Ser., B 2, No. 2, 411--425 (1988; Zbl 0689.35070)