zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Integrated semigroups. (English) Zbl 0689.47014
W. Arendt in his investigation on resolvents of positive operators introduced the concept of integrated semigroup of a family of bounded operators. Using this concept of integrated semigroups the authors study the structure theory of integrated semigroups and characterise the operators satisfying the Hille-Yosida condition as generators of locally Lipschitz continuous integrated semigroups. As an application, the authors give an easy proof of a theorem due Da Prato and Sinestrari on the inhomogeneous Cauchy problem associated to such operators. In the end the authors consider the bounded perturbations of generators of integrated semigroups.
Reviewer: D.Somasundaram

47D03(Semi)groups of linear operators
Full Text: DOI
[1] Adams, R. A.: Sobolev spaces. (1975) · Zbl 0314.46030
[2] Apteker, S.: Contributions to the theory of semigroup distributions. Ph. D. Dissertation (1983)
[3] Arendt, W.: Resolvent positive operators and integrated semigroups. Semesterbericht funktionalanalysis (1984) · Zbl 0566.47027
[4] Arendt, W.: Vector valued Laplace transforms and Cauchy problems. Israel J. Math. 59, 327-352 (1987) · Zbl 0637.44001
[5] Arendt, W.: Resolvent positive operators. Proc. London math. Soc. 54, 321-349 (1987) · Zbl 0617.47029
[6] Balabane, M.; Emamirad, H. A.: Smooth distribution group and schrödinge equation in $Lp(Rn)$. J. math. Anal. appl. 70, 61-71 (1979) · Zbl 0444.47035
[7] Balabane, M.; Emamirad, H. A.: Lp estimates for Schrödinger evolution equations. Trans. amer. Math. soc. 291 (1985) · Zbl 0588.35029
[8] Beals, R.: On the abstract Cauchy problem. J. funct. Anal. 10, 281-299 (1972) · Zbl 0239.34028
[9] Chazarain, J.: Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes. J. funct. Anal. 7, 387-446 (1971) · Zbl 0211.12902
[10] Da Prato, G.; Sinestrari, E.: Differential operators with nondense domain. Ann. scuola norm. Sup. Pisa 14, 285-344 (1987) · Zbl 0652.34069
[11] Fattorini, H. O.: Second order linear differential equations in Banach spaces. (1985) · Zbl 0564.34063
[12] Goldstein, J.: Semigroups of linear operators and applications. (1985) · Zbl 0592.47034
[13] Hörmander, L.: Estimates for translation invariant operators in lp spaces. Acta math. 104, 93-139 (1960)
[14] Kellermann, H.: Integrated semigroups. Dissertation universität Tübingen (1986) · Zbl 0604.47025
[15] Nagel, R.: One-parameter semigroups of positive operators. (1986) · Zbl 0585.47030
[16] Neubrander, F.: Wellposedness of abstract Cauchy problems. Semigroup forum 29, 75-85 (1984) · Zbl 0542.34053
[17] Neubrander, F.: Integrated semigroups and their applications to the abstract Cauchy problem. Pacific J. Math. 135, 111-155 (1988) · Zbl 0675.47030
[18] Pazy, A.: Semigroups of linear operators and applications to partial differential equations. (1983) · Zbl 0516.47023
[19] Schaefer, H. H.: Topological vector spaces. (1971) · Zbl 0212.14001