zbMATH — the first resource for mathematics

On commuting circle mappings and simultaneous Diophantine approximations. (English) Zbl 0689.58031
In this paper the question is studied when a family of orientation- preserving, pairwise commuting circle diffeomorphisms are simultaneously smoothly conjugate to rotations. For the local problem, i.e. for \(C^{\infty}\)-diffeomorphisms sufficiently close to rotations a sufficient condition is given in terms of their rotation numbers. This condition is related to the nature of the simultaneous approximation of the rotation numbers by rationals with the same denominator. These questions lead to a problem in the theory of simultaneous Diophantine approximations which is solved in Theorem 2. The corresponding global problem, which is the analogue of Herman’s celebrated theorem on a single circle mapping, remains an open problem.
Reviewer: Jürgen Moser

37E10 Dynamical systems involving maps of the circle
37E45 Rotation numbers and vectors
58D05 Groups of diffeomorphisms and homeomorphisms as manifolds
11J13 Simultaneous homogeneous approximation, linear forms
Full Text: DOI EuDML
[1] Erdös, P.: Representations of real numbers as sums and products of Liouville numbers. Mich. Math. J.9, 59–60 (1962) · Zbl 0114.26306 · doi:10.1307/mmj/1028998621
[2] Haefliger, A., Banghe, L.: Currents on circle invariant by a Fuchsian group geometric dynamics. In: Palis, J., Jr. (ed.) Geometric dynamics. Proceedings Rio de Janeiro 1981. (Lect. Notes Math., vol. 1007, pp. 369–378) Berlin Heidelberg New York: Springer 1983
[3] Haefliger, A.: Some remarks on foliations with minimal leaves. J. Differ. Geom.15, 269–284 (1980) · Zbl 0444.57016
[4] Herman, M.R.: Sur la conjugaison différentiable des différentiable des diffeomorphismes de cercle à des rotations. Publ. I.H.E.S.49, 5–233 (1979)
[5] Jarnik, V.: Ueber einen Satz von A. Khinchine, zweite Mitteilung. Acta Arith.2, 1–22 (1936)
[6] Katznelson, Y., Ornstein, D.: The differentiability of the conjugation of certain diffeomorphisms of the circle. Ergodic Theory Dyn. Syst.9, 643–680 (1989) · Zbl 0819.58033
[7] Khanin, K.M., Sinai, Y.: A new proof of M. Herman’s theorem. Commun. Math. Phys. 112, 89–101 (1987) · Zbl 0628.58021 · doi:10.1007/BF01217681
[8] Moser, J.: A stability theorem for minimal foliations on a torus. Ergodic Theory Dyn. Syst.8, 251–281 (1988) · Zbl 0632.57018 · doi:10.1017/S0143385700009457
[9] Schmidt, W.: Diophantine approximations. (Lect. Notes Math., vol. 785), Berlin Heidelberg New York: Springer 1980 · Zbl 0421.10019
[10] Siegel, C.L.: Iteration of analytic functions. Ann. Math.43, 607–612 (1942) · Zbl 0061.14904 · doi:10.2307/1968952
[11] Sprindžuk, V. G.: Metric theory of Diophantine approximations. New York: Wiley 1979
[12] Yoccoz, J.C.: Theses at the Université Paris Sud, in particular lère thèse: Centralisateurs et conjugaison différentiable des diffeomorphismes du cercle, June 1985
[13] Yoccoz, J.C.: Conjugaison différentiable des diffeomorphismes du cercle dont le nombre de rotation vérifie une condition Diophantine. Ann. Sci. Éc. Norm. Supér., IV Sér.17, 333–359 (1984) · Zbl 0595.57027
[14] Zehnder, E.: Generalized implicit function theorem with applications to small divisor problems I. Commun. Pure Appl. Math.28, 91–140 (1975) · Zbl 0309.58006 · doi:10.1002/cpa.3160280104
[15] Cartan, H.: Une théorème sur les groupes ordonés. Bull. Sci. Math.63, 201–205 (1939) · Zbl 0023.21401
[16] Hölder, O.: Die Axiome der Quantität und die Lehre vom Mass. Berichte der Verhandl. der Sächsischen Akad. Wiss., Leipzig52, 1–64 (1901) · JFM 32.0079.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.